Simultaneous Presentation of Wilson's disease and Autoimmune Hepatitis

F. Imanzadeh M.D.

Associate Professor of Pediatric Gastroenterohepatology Gastroenterohepatology ward Mofid Children's Medical Center Shahid Beheshti University of Medical Sciences Tehran, Iran

Introduction

 Wilson's disease (WD) and autoimmune hepatitis (AIH) are considered as the common causes of acute and chronic hepatitis.

The correct diagnosis and selecting the appropriate therapy remains a clinical dilemma

AIH scoring

Liver-kidney microsomal antibody \geq 1:40	2
Anti-soluble liver antigen positive	2
Total serum IgG	
>ULN	1
\geq 1.1 × ULN	2
Liver histology	
Compatible with autoimmune hepatitis: lymphocytic infiltrates, chronic hepatitis	1
Typical of autoimmune hepatitis: ^b interface hepatitis	2

WD scoring

Table 6 Diagnostic Score in Wilson's Disease, Agreed at a Consensus Meeting.¹⁰¹

Score	-1	0	1	2	
Kayser-Fleischer rings	dorth man	Absent	Tollar take	Present	1665m
Neuropsychiatric symptoms suggestive of WD (or typical brain MRI)		Absent		Present	
Coombs negative hemolytic anemia + high serum copper		Absent	Present		
Urinary copper (in the absence of acute hepatitis)		Normal	1-2 × ULN	>2 × ULN, or >5 × ULN 1 day after 2 (0.5 g p-penicillamine	
Liver copper quantitative	Normal		$<5 \times ULN$	>5 × ULN	
Rhodanine positive hepatocytes (only if quantitative Cu measurement is not available		Absent	Present		
Serum ceruloplasmin		>0.2 g/L	0.1-0.2 g/L	<0.1 g/L	
Disease-causing mutations detected		None	1		2
Asse	ssment of the W	ilson's Disease di	agnostic score		
0-1: unlikely	2-3: probal	ole		4 or more: highly lil	cely.

Mater In the EvenWilson Database 103 aneas cooring >4 are accounted as having WD

The misleading point in differentiating AIH from WD:

- Low titer autoantibody production in Wilson disease due to hepatocyte necrosis
- Abnormal 24-hour urine copper excretion
- Liver biopsy and histochemical staining

- Several cases of WD that were initially diagnosed as AIH
- partial response to immunosuppresses was achieved in these patients.

- The coexistence of these diseases in one patient, at the same time, is rare.
- Here, we present a case of acute hepatitis with dominant features of both WD and AIH

- A 10-year-old boy with a history of nausea, vomiting, and tea-color urine, since days before admission.
- His parents were not relatives.
- His father was suffering from insulin dependent diabetes mellitus.
- The patient was icteric and had an ill looking appearance
- Vital signs were stable
- The spleen was not palpable, although mild hepatomegaly and RUQ tenderness were detected.
- No findings in favor of chronic liver disease

- Laboratory investigations revealed mild anemia, abnormal coagulation profile, direct hyperbilirubinemia and elevated liver enzymes
- <u>Reversed albumin globulin ratio</u> (albumin = 3 g/dL and globulin = 4.9 g/dL).
- There was no specific key point in his past medical history or his familial history that would guide our investigation for a specific diagnosis.
- Therefore, we evaluated him for WD, AIH and viral hepatitis, in primary investigation.
- Serologic testing for viral hepatitis were negative.

Lab Tests

Table 1. Primary Laboratory Investigation	Table 1.	Primary	y Laboratory	Investigation ⁴	1
---	----------	---------	--------------	----------------------------	---

Marker	Value	Marker	Value	Marker	Value
WBC	7.1 × 10 ³ /microL	AST	139 mg/dL	BUN	9 mg/dL
RBC	3.6×10 ⁶ /microL	ALT	133 mg/dL	Cr	0.3 mg/dL
НЪ	8.9 g/L	Uric acid	1.8 mg/dL	Na	137 meq/L
Platelet	151×10 ³ /microL	Bilirubin (total, direct)	(7.3, 2.5) mg/dL	К	4.3 meq/L
Reticulocytes	2.7%	Alkaline phospha- tase	286 IU/L	Ca	7.8 mg/dL
MCV	99.7 fL	BS	72 mg/dL	Phosphate	1.9 mg/dL
Coombs (direct, indirect)	Neg.	PT, INR	19.5 s, 2.02	Total protein	7.9 g/dL
ESR	54 mm/h	PTT	53 s	Albumin	3 g/dL

Lab Tests (con.)

Table 2. Specific Laboratory Investigation a

Marker	Value	Marker	Value
ANA	1/160	Ceruloplasmin	0.2 g/L
AMA	1/160	24hr Urine Copper	1600 microgr/d
ASMA	1/80	HCV-Ab IgM	0.09
Anti-LKM1	1/20	Alpha 1 antitrypsin genotyping	MM-Pi
HAV Ab (IgM)	0.3		
HBs Ag (ECL)	0.9		
HBs Ab (ECL)	23.9		

- Abdominal US: no space-occupying lesion and homogenous echo pattern parenchyma. Spleen size was in the upper limit of normal, with normal parenchyma.
- In slit-lamp examination by ophthalmologist, the <u>Kayser-Fleischer ring</u> was seen in upper and lower parts of cornea.

Liver biopsy

- fibrous bands encircling clusters of hepatocytes and regenerative nodules.
- Moderate to severe lymphocyte infiltrations and mild infiltration of eosinophil and neutrophils resulted in interface hepatitis
- Binuclear and multi-nuclear hepatocytes were seen, with feathery degeneration in several cells.
- In specific staining of tissue, no finding in favor of copper rich cells was seen.
- Histochemical analysis with rhodamine and orcein was negative.
- However, <u>the amount of copper in dry liver tissue</u> was about **20 times** the upper limit of normal.

Pathology

Pathology

Figure 2. A, Moderate Infiltration of Lymphomononuclear Cell in Fibrous Septae, Resulting in Interface Hepatitis; B, Trichrome Stain Shows Marked Fibrosis of Liver Encasing Nodules and Single Hepatocytes (Blue Areas)

- Scoring system for this patient was done and the score of 7 was reached for him, in both of WD and AIH scoring systems
- According to the international scoring system, the score ≥ 7 are diagnostic for AIH and the score > 4 is considered positive for WD

- By considering concomitant WD and AlH, we started oral prednisolone (1 mg/Kg/day) and azathioprine (1 mg/kg) and d-penicillamine for the patient, and an acceptable response was reached.
- <u>Liver enzymes</u> declined dramatically, after 20 days of treatment, and changed to <u>near normal levels</u>, after 6 months of medical therapy (AST= 54 mg/dL and ALT= 57 mg/dL).
- **PT and INR** changed to 17.5 seconds and 1.6, respectively, after administration of treatment and, <u>at the end of 6 months</u> of treatment, they were 14 seconds and 1.23, respectively.
- Also, the total and direct bilirubin changed to 0.7 and 0.2 mg/dL, at <u>6 months</u>.

Discussion

- Acute hepatitis has a wide variety of etiologies.
- The correct diagnosis and selecting the appropriate therapy remains a clinical dilemma

- There are few cases with classical manifestations of WD and several features of AIH, simultaneously:
- Milkiewics and co-workers (2000) reported two cases of WD with superimposed autoimmune features
- Wozniak and co-workers also in 2002 reported two cases of WD initially diagnosed as AIH

Differentiating these two entities

- Autoantibody can be <u>positive in WD due to</u> <u>hepatocyte necrosis</u>, especially in early stage of this disease.
- Liver biopsy and histochemical staining: despite elevated hepatic copper content, <u>these stains are</u> <u>frequently negative</u> in patients with WD.

- The 24-hour urine copper:
- This test is abnormal in 80 85% of untreated patients with WD.
- However, in <u>any severe icteric hepatitis</u>, abnormal copper metabolism may occur. Although the <u>24-hour urine copper</u> in acute icteric hepatitis is occasionally <u>increased</u>, the level does not exceed the value of 200 microgram/24 hour.

 In relation to a certain degree of <u>overlapping</u> between WD and AIH, it is highly recommended to screen for WD, particularly when poor response to steroid treatment is seen in patients with AIH

- On the other hand, there are several cases of WD patients, who are suffering from superimposed manifestations of AIH.
- In this group of patients, combination therapy with penicillamine and steroid may be of benefit

Conclusion

- This case highlights, although rare, the coexistence of Wilson's disease and autoimmune hepatitis and the need to maintain a high level of awareness of this problem.
- Therefore, it is reasonable to consider this type of hepatitis in rare patients, with dominant features of both diseases at the same time.

Thanks for your attention

