

ISSN 2459 - 1777

BEYOGLU EYE JOURNAL

Volume 10 Issue 4 Year 2025

TUBITAK TR INDEX, TURK MEDLINE,
TURKIYE CITATION INDEX, EBSCO, PUBMED,
PUBMED CENTRAL, PROQUEST, DOAJ,
RESEARCH4LIFE, HINARI, SCOPE DATABASE,
SCOPUS, GALE, IDEALONLINE INDEX AND
ASIAN SCIENCE CITATION INDEX.

www.beyoglueye.com

Editor-in-Chief

Muhittin TASKAPILI, MD

University of Health Sciences, Beyoglu Eye Training and Research Hospital, Istanbul

Editor

Cigdem ALTAN, MD

University of Health Sciences, Beyoglu Eye Training and Research Hospital, Istanbul

Associate Editors

Semra AKKAYA TURHAN, MD

Department of Ophthalmology, Marmara University School of Medicine, Istanbul, Türkiye

Pinar CAKAR OZDAL, MD

Private physician, Ankara

Melda NURSAL YENEREL, MD

Department of Ophthalmology, Medipol University Faculty of Medicine, Istanbul

Yusuf YILDIRIM, MD

Department of Ophthalmology, Medipol University Faculty of Medicine, Istanbul

External (Guest) Editors

Iqbal Ike K. AHMED, MD

Prism Eye Institute, Mississauga, Ontario, Canada

Cagri G. BESIRLI, MD

Michigan Medicine Ophthalmology, Retina Clinic, Ann Arbor, MI, USA

International Scientific Advisory Board

Jean Deschênes, MD, FRCSC

McGill University, Ophthalmologist-in-Chief, McGill University Health Center, Montréal, Québec, Canada

Murat DOGRU, MD

Keio University, Department of Ophthalmology, Keio, Tokyo, Japan

Nina JOVANOVIC, MD

Canton Hospital Zenica, Ophthalmology Department, Zenica, Bosnia and Herzegovina

Sezen KARAKUS, MD

The Johns Hopkins Wilmer Eye Institute, Baltimore, United State of America

Ulugbek R. KARIMOV, MD

Sirdarya Regional Ophthalmic Hospital, Tashkent, Uzbekistan

Nazim ZAYNUTDINOV, MD

Tashkent Graduate Education Institute, Department of Eye Diseases, Tashkent, Uzbekistan

Statistical Editor

Nurdan COLAKOGLU

Department of Business Administration, Arel University Faculty of Economic and Administrative Sciences, Istanbul, Türkiye

Language Editor

Neslihan ONDER OZDEMIR, MD

Bursa Uludag University, School of Foreign Languages, Bursa, Türkiye

Owner (Publisher) İstanbul: Beyoglu Göz Egitim ve Arastirma Hastanesi
(Beyoglu Eye Journal)

Address: Bereketzade Cami Sokak No: 2 Beyoglu/Istanbul/Türkiye

Phone: +90 212 251 59 00

Fax: +90 212 245 09 48

E-mail: info@beyoglueye.com

Web: <https://beyogluozech.saglik.gov.tr>

Corporate Contributor (Publishing House): Kare Yayıncılık (Kare Publishing)

Address: Göztepe Mah. Fahrettin Kerim Göky Cad. No: 200 Da: 2, Göztepe, Kadıköy, İstanbul, Türkiye

Phone: +90 216 550 61 11

Fax: +90 216 550 61 12

Web: www.karepb.com

E-mail: kare@karepb.com

Publications Coordinator: Ece Hanne Şimşek

Graphic Design: Beste Kurtcu Ay

Beyoglu Eye Journal is indexed in TUBITAK TR Index, Turk Medline, Türkiye Citation Index, EBSCO, PubMed, PubMed Central, ProQuest, DOAJ, Research4Life, Hinari, Scope Database, Scopus, GALE, Idealonline index and Asian Science Citation Index.

Beyoglu Eye Journal is a peer-reviewed journal published triannually by the Beyoglu Eye Training and Research Hospital. Materials published in the Journal is covered by copyright 2025 Beyoglu Eye Journal. All rights reserved. This publication is printed on paper that meets the international standard ISO 9706:1994. National Library of Medicine (USA) recommends the use of permanent, acid-free paper in the production of biomedical literature.

Yayın Turu: Uluslararası Süreri
Basım Tarihi: December 2025
Basım: Yıldırım Matbaacılık, İstanbul
Tel: +90 212 629 80 37

National Scientific Advisory Board

Mutlu ACAR, MD
Department of Ophthalmology,
Yuksek Ihtisas University, Liv
Hospital, Ankara, Türkiye

Banu ACIKALIN, MD
İstanbul University of Health
Sciences, Fatih Sultan Mehmet
SUAM, İstanbul, Türkiye

Alper AGCA, MD
Department of Ophthalmology,
World Eye Hospital, İstanbul, Türkiye

Serpil AKAR, MD
Department of Ophthalmology,
Başkent University, İstanbul, Türkiye

Funda Ebru Aksoy, MD
Department of Ophthalmology,
Beyoglu Training and Research
Hospital, İstanbul, Türkiye

Mehmet Numan ALP, MD
Department of Ophthalmology,
Dünya Göz Hospital, Ankara, Türkiye

Ceyhun ARICI, MD
Department of Ophthalmology,
Cerrahpaşa Faculty of Medicine,
İstanbul, Türkiye

Halil Ozgur ARTUNAY, MD
Department of Ophthalmology,
University of Health Sciences, Beyoglu
Eye Training and Research Hospital,
İstanbul, Türkiye

Burcu Kemer Atik, MD
Department of Ophthalmology,
Beyoglu Training and Research
Hospital, İstanbul, Türkiye

Sevcan BALCI, MD
Department of Ophthalmology,
Haydarpasa Numune Training and
Research Hospital, İstanbul, Türkiye

Muhammed BATUR, MD
Department of Ophthalmology,
Yüzüncü Yıl University Faculty of
Medicine, Van, Türkiye

Sukru BAYRAKTAR, MD
Private Doctor

Zerrin BAYRAKTAR, MD
Private Doctor

Ozlem BUDAKOGLU, MD
Department of Ophthalmology, Binali
Yıldırım University, Erzincan, Türkiye

Ayse BURCU, MD
Department of Ophthalmology,
Ankara Training and Research
Hospital, Ankara, Türkiye

Kubra SEREFOGLU CABUK, MD
Department of Ophthalmology,
University of Health Sciences, Çam
Sakura State Hospital, İstanbul,
Türkiye

Ali Bulent CANKAYA, MD
Department of Ophthalmology,
Hacettepe University Faculty of
Medicine, Ankara, Türkiye

Arzu TASKIRAN COMEZ, MD
Department of Ophthalmology,
Okneydani Training and Research
Hospital, İstanbul, Türkiye

Cumali DEGIRMENCI, MD
Department of Ophthalmology,
Dokuz Eylül University Faculty of
Medicine, İzmir, Türkiye

Ufuk ELGIN, MD
Department of Ophthalmology,
Ankara Uluçanlar Eye Training and
Research Hospital, Ankara, Türkiye

Muhsin ERASLAN, MD
Department of Ophthalmology,
Marmara University, İstanbul, Türkiye

M. Gurkan ERDOGAN, MD
Department of Ophthalmology,
İstanbul University, İstanbul Faculty of
Medicine, İstanbul, Türkiye

Sezin OZDOGAN ERKUL, MD
Department of Ophthalmology,
İstanbul University, İstanbul Faculty of
Medicine, İstanbul, Türkiye

Yasemin OZDAMAR EROL, MD
Department of Ophthalmology,
Ankara Uluçanlar Eye Training and
Research Hospital, Ankara, Türkiye

Birsen GOKYIGIT, MD
Department of Ophthalmology,
University of Health Sciences, Beyoglu
Eye Training and Research Hospital,
İstanbul, Türkiye

Hulya GUNGEL, MD
Department of Ophthalmology,
Health Sciences University, İstanbul
Training and Research Hospital,
İstanbul, Türkiye

Sirel GUR GUNGOR, MD
Department of Ophthalmology,
Başkent University, İstanbul,
Türkiye

Kivanc GUNGOR, MD
Department of Ophthalmology,
Gaziantepe University Faculty of
Medicine, Gaziantepe, Türkiye

Serhat IMAMOGLU, MD
Department of Ophthalmology,
Health Sciences University
Haydarpasa Numune SUAM,
İstanbul, Türkiye

Sibel KADAYIFCILAR, MD
Department of Ophthalmology,
Hacettepe University, Ankara,
Türkiye

Gamze OZTURK
KARABULUT, MD
Department of Ophthalmology,
University of Health Sciences, Beyoglu
Eye Training and Research Hospital,
İstanbul, Türkiye

Eyyup Karahan, MD
Department of Ophthalmology, Doç.
Dr. Eyyüp Karahan Kliniği, Balıkesir,
Türkiye

Suleyman KAYNAK, MD
Department of Ophthalmology,
Dokuz Eylül University Faculty of
Medicine, İzmir, Türkiye

Ahmet KIRGIZ, MD
Department of Ophthalmology,
University of Health Sciences, Beyoglu
Eye Training and Research Hospital,
İstanbul, Türkiye

Pinar BINGOL KIZILTUNC, MD
Department of Ophthalmology,
Ankara University Faculty of
Medicine, Ankara, Türkiye

Tolga KOCATURK, MD
Department of Ophthalmology, Adnan
Menderes University, Aydın, Türkiye

Isil KULTUTURK, MD
Department of Ophthalmology,
Beyoglu Training and Research
Hospital, İstanbul, Türkiye

Halit OGUZ, MD
Department of Ophthalmology,
Medeniyet University Faculty of
Medicine, İstanbul, Türkiye

Ozay OZ, MD
Department of Ophthalmology,
İstanbul Yeni Yüzyıl University
Faculty of Medicine, İstanbul, Türkiye

Hakan OZDEMIR, MD
Department of Ophthalmology,
Bezmialem University Faculty of
Medicine, İstanbul, Türkiye

Altan Atakan OZKAN, MD
Department of Ophthalmology,
Çukurova University Faculty of
Medicine, Adana, Türkiye

Cemal OZSAYGILI, MD
Department of Ophthalmology,
Kayseri City Hospital, Kayseri,
Türkiye

Banu TURGUT OZTURK, MD
Department of Ophthalmology,
Selcuk University, Konya, Türkiye

Can OZTURKER, MD
Department of Ophthalmology,
İstanbul University, İstanbul Faculty of
Medicine, İstanbul, Türkiye

Melis PALAMAR, MD
Department of Ophthalmology,
Dokuz Eylül University Faculty of
Medicine, İzmir, Türkiye

Seren PEHLIVANOGLU, MD
Department of Ophthalmology,
University of Health Sciences, Beyoglu
Eye Training and Research Hospital,
İstanbul, Türkiye

Irfan PERENTE, MD
Private Doctor

Ali Osman SAATCI, MD
Department of Ophthalmology,
Dokuz Eylül University, Faculty of
Medicine, İzmir, Türkiye

Nihat SAYIN, MD
Department of Ophthalmology,
İstanbul Kanuni Sultan Süleyman
Training and Research Hospital,
İstanbul, Türkiye

Ahmet Murat SARICI, MD
Department of Ophthalmology,
İstanbul University Cerrahpaşa
Faculty of Medicine, İstanbul,
Türkiye

Emine MALKOC SEN, MD
Department of Ophthalmology,
Ulucanlar Training and Research
Hospital, Ankara, Türkiye

Mehmet Ali SEKEROGLU, MD
Department of Ophthalmology,
Ulucanlar Training and Research
Hospital, Ankara, Türkiye

Tulay SIMSEK, MD
Department of Ophthalmology,
Osmangazi University Faculty of
Medicine, Eskişehir, Türkiye

Tamer TAKMAZ, MD
Department of Ophthalmology,
Ankara City Hospital, Ankara,
Türkiye

Betul TUGCU, MD
Department of Ophthalmology,
Bezmialem Vakif University, İstanbul,
Türkiye

Nurten UNLU, MD
Department of Ophthalmology,
University of Health Science Ankara
Health Application Research Center,
Ankara, Türkiye

Canan Asli UTINE, MD
Department of Ophthalmology,
Dokuz Eylül University Faculty of
Medicine, İzmir, Türkiye

Tekin YASAR, MD
Department of Ophthalmology,
University of Health Sciences, Beyoglu
Eye Training and Research Hospital,
İstanbul, Türkiye

Ozgur YALCINBAYIR, MD
Department of Ophthalmology,
Uludag University, Bursa, Türkiye

Nilufer YALCINDAG, MD
Department of Ophthalmology,
Ankara University Faculty of
Medicine, Ankara, Türkiye

Serpil YAZGAN, MD
Department of Ophthalmology,
İhoni University Faculty of Medicine,
Malatya, Türkiye

Aysegul Mavi YILDIZ, MD
Department of Ophthalmology, Bursa
Retina Eye Hospital, Bursa, Türkiye

Burcin KEPEZ YILDIZ, MD
Department of Ophthalmology,
University of Health Sciences,
Beyoglu Eye Training and
Research Hospital, İstanbul,
Türkiye

Suzan GUVEN YILMAZ, MD
Department of Ophthalmology, Ege
University Faculty of Medicine, İzmir,
Türkiye

Aim and Scope

The BEYOGLU EYE JOURNAL is an international periodical published triannually based on independent, unbiased, double-blinded and peer-review principles. Four issues are released every year in March, June, September, and December. The language of publication is English.

The BEYOGLU EYE JOURNAL aims to publish qualified and original clinical, experimental and basic research on ophthalmology at the international level. The journal's scope also covers editorial comments, reviews of innovations in medical education and practice, case reports, scientific letters, educational articles, letters to the editor, articles on publication ethics, technical notes, and reviews.

The target readership includes academic members, specialists, residents, and general practitioners working in the field of ophthalmology.

The editorial and publication processes of the journal are conducted in accordance with the guidelines of the International Committee of Medical Journal Editors (ICMJE), the World Association of Medical Editors (WAME), the Council of Science Editors (CSE), the European Association of Science Editors (EASE), and the Committee on Publication Ethics (COPE).

Beyoglu Eye Journal is indexed in TUBITAK TR Index (2016), Turk Medline (2017), Turkiye Citation Index (2017), EBSCO (2018), PubMed (2019), PubMed Central (2019), ProQuest (2020), DOAJ (2020), Research4Life (2020), Hinari (2020), Scope Database (2021), Scopus (January 2023), GALE (June 2023), Idealonline index (2024) and Asian Science Citation Index (ASCI)(2024), J-Gate (2025).

It is the goal of the BEYOGLU EYE JOURNAL to be indexed in the Web of Science, SCI-Expanded and Index Medicus.

The requirements for submission of manuscripts and detailed information about the evaluation process are available in the published journal and also as 'Instructions for Authors' on the website (www.beyoglueye.com).

Statements and opinions expressed in the BEYOGLU EYE JOURNAL reflect the views of the author(s). All liability for the advertisements rests with the appropriate organization(s). The Beyoglu Eye Training and Research Hospital, the editor-in-chief and KARE PUBLISHING do not accept any responsibility for these articles and advertisements.

Subscriptions

Applications for subscriptions should be made to the editorial office.

Financial support and advertising

The revenue of the BEYOGLU EYE JOURNAL is derived from subscription charges and advertisements. Institutions wishing to place an advertisement in the printed version of the journal or on the webpage should contact KARE PUBLISHING.

Instructions for Authors

Submission of Manuscripts

This journal uses JournalAgent to peer-review manuscript submissions. Please read the guide for JournalAgent authors before making a submission. Complete guidelines for preparing and submitting your manuscript to this journal are provided below. (<https://www.journalagent.com/beyoglu/>)

All authors' ORCID numbers need to be submitted when creating an account for correspondence. To obtain an ORCID number, please visit: <https://orcid.org/>

Manuscripts must be submitted through the journal's website <http://www.journalagent.com/beyoglu/>. Paper manuscript submissions are not accepted. Full-length papers comprise the major part of each issue. Reviews are accepted for publication only at the invitation of the Editors.

It is the responsibility of the authors to ensure that the English used in their manuscript is correct, both grammatically and stylistically, before submission.

Beyoglu Eye Journal strives to publish papers of high quality regarding clinical research, epidemiology, anatomy, biophysics, biochemistry, developmental biology, microbiology, and immunology related to the eye and vision.

Publishing Ethics

The Editors and Kare Publishing are committed to upholding the highest academic, professional, legal, and ethical standards in the publication of this journal. To this end, we have adopted a set of guidelines, to which all submitting authors are expected to adhere, to assure integrity and ethical publishing for authors, reviewers, and editors.

The publisher, Kare Publishing, is a member of the Committee of Publications Ethics (COPE). COPE aims to provide a forum for publishers and editors of scientific journals to discuss issues related to the integrity of their work, including conflicts of interest, falsification and fabrication of data, ethical misconduct, unethical experimentation, inadequate patient consent, and authorship disputes. For more information on COPE please visit <http://publicationethics.org>.

Fees

There is no fee for article submission, article processing or publication.

Policy of Screening for Plagiarism

The manuscripts are scanned by the Publisher's Office using the iThenticate program for determination of plagiarism and non-ethical situations.

Open Access

Beyoglu Eye Journal is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Commons User Licenses

Creative Commons Attribution-NonCommercial (CC BY-NC) For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work, as long as they credit the author(s) and provided they do not alter or modify the article.

Length of Manuscripts: The maximum word count and illustrations including tables is:

Full Papers: 5000 words, 8 illustrations / tables

Case Reports: 3500 words, 5 illustrations / tables, max 6 authors

Short Communications: 1500 words, 4 illustrations / tables, max 2 authors

Reviews: 7000 words, 10 illustrations / tables

Case Reports: 4000 words, 8 illustrations / tables

Surgical Techniques: 4000 words, 8 illustrations / tables, max 3 authors

Authors who wish to contribute a review should first contact one of the editors-in-chief, Muhittin Taskapili (mutaskapili@gmail.com).

The journal accepts letters (not to exceed 750 words) only if they concern articles already published in Beyoglu Eye Journal. (max 2 authors)

Announcements of forthcoming meetings, courses, etc., may be published. The editors will also consider special issues containing papers on topics of focus or from a conference.

Each manuscript must be accompanied by a statement indicating that it has not been published elsewhere and that it has not been submitted simultaneously for publication elsewhere. Beyoglu Eye Journal follows the guidelines of the International Committee of Medical Journal Editors, which generally prohibits duplicate publication (<http://www.icmje.org/>). It is also the responsibility of the lead or corresponding author to indicate on the manuscript title page whether a commercial relationship existed in the form of financial support or personal financial interest. Financial support includes support from a for-profit company in the form of research funding.

Authors are responsible for obtaining permission to reproduce copyrighted material from other sources and are required to sign an agreement for the transfer of copyright to the publisher. As an author, you are required to secure permission if you want to reproduce any figure, table, or extract text from any other source. This applies to direct reproduction as well as "derivative reproduction" (such as when you have created a new figure or table which is derived substantially from a copyrighted source).

All accepted manuscripts, artwork, and photographs become the property of the publisher. All parts of the manuscript should be written in a clear font, such as Times New Roman or Arial, double-spaced, with margins of at least one inch on all sides. The main text and tables should be uploaded as Word documents. Do not include line numbers. Manuscript pages should be numbered consecutively throughout the paper.

Authors should provide a cover letter that includes the contact details of the corresponding author. Authors should briefly explain why their work is appropriate for Beyoglu Eye Journal.

Manuscript Structure

Submissions need to be of sufficient editing quality that they will be easily interpreted by the readership of the Journal. If submitted work does not meet this standard, it will be returned to the authors. The Journal follows the AMA Manual of Style for manuscripts submitted to biomedical journals.

Set your document as A4 paper, use double line spacing, Times font size 12, number all pages, do not justify the right margin, and do not use line numbers. Save your manuscript as a Word document (.doc, .docx, or previous).

Structure your manuscript file as follows: Title page, Abstract and key words, Text, Acknowledgments, References, Tables, Figure legends.

Title page. The first page (title page) of your manuscript file must include the following information:

- Full title (max 150 characters including letters and spaces), which must be concise and informative.
- Short title (max 75 characters, including letters and spaces).
- All authors listed as first name, initials, and last name (i.e., Zeynep Alkin, MD) with highest academic or medical degree first.
- Institutional affiliation of each author, using superscripts and not symbols (e.g., Alper Agcal).
- Corresponding author's information (full mailing address, phone and fax numbers, email address); this is usually the submitting author.
- Clinical trial protocol number when submitting a clinical trial protocol.
- Online-only supplementary material, with a short description.

Abstract. A structured abstract of no more than 350 words is to be provided, divided into the following sections: Objectives, Methods, Results, and Conclusion. Avoid abbreviations, diagrams, and reference to the text in the abstract. At least three and maximum of six key words should be identified for indexing. List the key words beneath the abstract in alphabetical order. Use terms from the Medical Subject Headings list from Index Medicus whenever possible. A library of terms is available at <http://www.nlm.nih.gov/mesh/meshhome.html>.

Main Text. Divide the text into the following sections: Introduction, Methods, Results, Discussion and Conclusion. Use commas (,) to separate thousands and full stop (.) for decimals (e.g. 12,354.55). Include tables in the manuscript file, after the references. Number all figures (graphs, charts, photographs, and illustrations) in the order of their citation in the text. Figures must be submitted as separate files and not embedded in the Word document.

Funding. List all sources of funding for the research.

Declaration of Interests. Declare any competing interests for each author. All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. It is the sole responsibility of authors to disclose any affiliation with any organization with a financial interest, direct or indirect, in the subject matter or materials discussed in the manuscript (such as consultancies, employment, paid expert testimony, honoraria, speakers bureaus, retainers, stock options or ownership, patents or patent applications or travel grants) that may affect the conduct or reporting of the work submitted. All sources of funding for research are to be explicitly stated. If uncertain as to what might be considered a potential conflict of interest, authors should err on the side of full disclosure.

All submissions to the journal must include full disclosure of all relationships that could be viewed as presenting a potential conflict of interest. If there are no conflicts of interest, authors should state that there are none. This must be stated at the point of submission (within the manuscript after the main text under a subheading "Declaration of interest" and where available within the appropriate field on the journal's Manuscript Central site). This may be made available to reviewers and will appear in the published article at the discretion of the Editors or Publisher.

If no conflict is declared, the following statement will be attached to all articles: Declaration of interest. The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

The intent of this policy is not to prevent authors with these relationships from publishing work, but rather to adopt transparency such that readers can make objective judgments on conclusions drawn.

Acknowledgments.

List in this section:

- Any substantial contribution provided by a person other than the author and who does not fulfill authorship criteria
- The assistance of medical writing experts
- All participating group authors who do not meet the full authorship criteria
- All sources of funding for the manuscript and the financial disclosures for all authors

Written permission must be obtained to include the names of all individuals included in the Acknowledgments section.

If the manuscript has been presented at a meeting, please indicate in this section name, location, and date of event.

References. References should be identified in the text with Arabic numerals and numbered in the order cited. All references should be compiled at the end of the article in the Vancouver style.

Authors are responsible for the accuracy and completeness of their references and for correct text citation. Personal communications,

unpublished data, abstracts, and oral or poster presentations should be limited and incorporated in parentheses within the text without a reference number. Signed permission should be included from each individual identified in a personal communication or as a source for unpublished data, as well as the date of communication.

Authors are responsible for the accuracy and completeness of their references and for correct text citation. Personal communications, unpublished data, abstracts, and oral or poster presentations should be limited and incorporated in parentheses within the text without a reference number. A signed permission should be included from each individual identified in a personal communication or as a source for unpublished data, as well as the date of communication.

- References should follow the text and begin on a separate page.
- References must be double line spaced and numbered consecutively in order of appearance within the text, using the Word automated numbering tool.
- Identify references in text, tables, and legends with Arabic numerals in parentheses, i.e., (5).
- List all authors when six or fewer; when seven or more, list only the first three and add et al.
- References used within tables or figure legends should be included in the reference list and numbered in consecutive order according to the table/figure citation in the text.
- Journal names should be abbreviated according to Index Medicus/Medline. If there is any doubt about abbreviation of a journal name, it should be spelled out completely.
- Any references to studies (including books or articles) that have been accepted for publication but are not yet published should indicate where they will be published and have the term "in press" in the reference in place of volume and page numbers. These must be updated prior to publication, if possible.

Examples.

Journal article (print): Erdogan G, Unlu C, Gunay BO, Kardes E, Ergin A. Implantation of foldable posterior chamber intraocular lens in aphakic vitrectomized eyes without capsular support. *Arq Bras Oftalmol* 2016;79:159-62.

Journal article (print, more than six authors): Ozkaya A, Alagoz C, Garip R, et al. The role of indocyanine angiography imaging in further differential diagnosis of patients with nAMD who are morphologically poor responders to ranibizumab in a real-life setting. *Eye (Lond)* 2016;30:958-65.

Book: Bill A, Maepa O. *Mechanisms and Routes of Aqueous Humor Drainage*. Philadelphia: WB Saunders; 1975.

Contribution to a Book: Farris RL. *Abnormalities of the tears and treatment of dry eyes*. In: Kaufman HE, Barron BA, McDonald MB, editors. *The Cornea*. 2nd ed. Boston, MA: Butterworth-Heinemann; 1998.

Tables and Figures. Tables and figures should not be embedded in the text, but should be included as separate sheets or files. A short descriptive title should appear above each table with a clear legend and any footnotes suitably identified below. All units must be included. Figures should be completely labeled, taking into account necessary size reduction.

Captions should be typed, double-spaced, on a separate sheet. All original figures should be clearly marked with the number, author's name, and top edge indicated.

Illustrations. Illustrations submitted should be clean originals or digital files. Digital files are recommended for highest quality reproduction and should follow these guidelines:

300 dpi or higher sized to fit on journal page EPS, TIFF, or PSD format only submitted as separate files, not embedded in text files

Page Proofs: All proofs must be corrected and returned to the publisher within 48 hours of receipt. If the manuscript is not returned within the allotted time, the editor will proofread the article and it will be printed per the editor's instruction.

Ethics and Policies

Ethical Responsibilities and Policies

Publication Ethics

The Beyoglu Eye Journal applies standards throughout the publication process to further our goal of sharing high-quality, objective, reliable, and useful information. We implement these processes to ensure appropriate support for our authors and their institutions, as well as our readers. It is crucial that all of the stakeholders in the process (authors, readers and researchers, publishers, reviewers, and editors) comply with ethical principles.

The Beyoglu Eye Journal is an open access publication and follows the guidelines and policies published by the Committee on Publication Ethics (COPE) (<https://publicationethics.org>). We expect all participants to observe the ethical responsibilities presented below.

Author's Responsibilities

- Studies submitted for publication must be original works of the author. References to other studies must be cited and/or quoted completely and accurately;
- Only those who provide a substantial intellectual contribution to the content of the work may be cited as an author. Other contributors may be recognized with acknowledgements at the conclusion of the article;
- Competing interests or relationships that may constitute a conflict of interest must be declared and explained in all studies submitted for publication;
- Authors must be able to provide documentation showing that they have the right to use the data analyzed, the necessary permissions related to the research, and any appropriate consent;
- Raw data used in the article must be available and may be requested from the author(s) within the framework of the evaluation process;
- In the event the author(s) notice an error at any point in the publication process or after publication, they have the obligation to inform the journal editor or publisher and cooperate in appropriate corrective action;
- Authors may not submit their article for publication to more than one journal simultaneously. Each application must be initiated following the completion of any previous effort. The Beyoglu Eye Journal will not accept previously published articles;
- Changes in authorship designation (such as adding authors, changing the printed order of the authors, removing an author) once the evaluation process has begun will not be accepted in order to protect all parties involved.

Editor's Role and Responsibilities

General Duties

The editor is responsible for everything published in the journal. In the context of this responsibility, editors have the following duties and obligations:

- Endeavor to meet the needs of readers and authors;
- Maintain continuous development to improve the quality of the journal;
- Consistently work to ensure quality;
- Support freedom of thought;
- Ensure academic integrity;
- Prevent business needs from compromising intellectual and ethical standards;
- Demonstrate clarity and transparency with any necessary corrections or explanations.

Reader Relationship

The editor is to make publication decisions based on expectations of suitable and desirable material. Studies accepted for publication must be original contributions that benefit the reader, researcher, practitioner, and the literature. In addition, editors are obliged to take into account feedback from readers, researchers, and practitioners, and to provide an informative response. Readers will also be informed of any funding provided to support published research.

Author Relationship

- The decision to accept an article is to be based on the importance, original value, validity, and clarity of expression of the work, and the goals and objectives of the journal;
- Studies accepted for evaluation and publication will not be withdrawn unless serious problems are identified;
- The editor will not disregard positive reviewer comments unless there is a serious problem with the study;
- New editors will not change publishing decisions made by previous editor(s) unless there is a serious problem;
- A description of the submission and evaluation process is publicly available;
- Authors are provided with descriptive and informative feedback.

Reviewer Relationship

- Reviewers are to be selected according to the subject of the study;
- Information and guidance for the evaluation phase is provided;
- Any conflicts of interest between authors and reviewers will be disclosed and managed appropriately;
- Reviewer identity is to be kept confidential to preserve a blind review process;
- Reviewers are to evaluate the study using unbiased, scientific, and constructive comments. Unkind or unscientific commentary will not be permitted;
- Reviewers will be evaluated using criteria such as timely response and quality of observations;
- The pool of reviewers is to be assessed and supplemented regularly to ensure a broad scope of expertise.

Editorial Board Relationship

The editor works with the members of the editorial board to ensure that they are familiar with journal policies and developments in regular meetings and announcements, and will provide training for new members and assistance to board members during their tenure in their role as a supporter of the journal.

- Editorial board members must be qualified and able to contribute to the journal;
- Members of the editorial board must evaluate studies impartially and independently;
- Editorial board members with the appropriate expertise will be given the opportunity to evaluate suitable articles;
- The editor will maintain regular contact with the editorial board and hold regular meetings regarding the development of editorial policies and other aspects of journal management.

Relations with the Owner of the Journal and the Publisher

The relationship between the editors and the publisher/journal owner is based on the principle of editorial independence and stipulated by contract.

Editorial and Blind Review Processes

The editor will apply the publicly defined publication policies created and enforced to ensure a timely and impartial evaluation process for all submissions.

Quality Assurance

The editor is responsible for confirming that the The Beyoglu Eye Journal publishing policies and standards are upheld for all articles.

Protection of Personal Data

The editor is obliged to ensure the protection of personal data related to subjects or images included in published work. Explicit documented consent of the individuals referenced in the research is required before the study will be accepted. The editors is also responsible for protecting the individual data of authors, reviewers, and readers.

Ethics Committee, Human and Animal Rights

The editor is required to ensure that human and animal rights were protected in the studies submitted for publication.

Measures Against Potential Misconduct

The editor must take action against any allegations of possible misconduct. In addition to conducting a rigorous and objective investigation of complaints, the editor is expected to share the findings and conclusions.

Maintaining Academic Publication Integrity

The editor is expected to ensure that any errors, inconsistencies, or misleading statements are corrected quickly and appropriately acknowledged.

Protection of Intellectual Property Rights

The editor is obliged to protect intellectual property and to defend the rights of the journal and author(s). In addition, the editor is to take the necessary measures to prevent any violation of the intellectual property rights of others in journal publications.

Creativity and Openness

- Constructive criticism is to be encouraged;
- Authors will be given the opportunity to reply to criticism;
- Negative results will not be a reason for submission denial.

Complaints

Editors are to respond to all complaints in a timely and comprehensive manner.

Political and Commercial Concerns

Political or commercial factors will not affect editorial decisions.

Conflicts of Interest

The editor is required to ensure that any conflicts of interest between authors, reviewers, or other editors are disclosed and managed appropriately to provide an independent and impartial process.

Reviewer's Ethical Responsibilities

Peer review of research embodies the scientific method, subjecting the work to the rigorous scrutiny of knowledgeable colleagues. The rigor of the review process directly affects the quality of the literature; it provides confidence in an objective and independent evaluation of the published work. The Beyoglu Eye Journal uses a double-blind review process. All comments and the evaluation are transmitted through the journal management system. Reviewers should:

- Only agree to evaluate studies related to their specialty;
- Return reviews within the designated timeframe;
- Evaluate with impartiality. Nationality, gender, religious beliefs, political beliefs, commercial concerns, or other considerations must not influence the evaluation;
- Refuse to review any work with a potential conflict of interest and inform the journal editor;
- Maintain confidentiality of all information. Only the final published version may be used for any purpose;
- Use thoughtful and constructive language. Hostile or derogatory comments are not acceptable;
- Report any potentially unethical behavior or content to kare@karepb.com via e-mail.

SYSTEMATIC REVIEW

Efficacy and Safety of Topical Insulin Eye Drops for Corneal Epithelial Defects: A Systematic Review, Meta-Analysis, and Grading of Recommendations Assessment, Development, and Evaluation Assessment

Alfatih M, Wunardi C, Rifa'i AZF 195

ORIGINAL ARTICLES

Compatibility Between the Intraocular Lens Master and Pentacam Devices in White-to-White Measurements Used in Phakic Intraocular Lens Calculations

Koru Toprak M, Toprak A, Ayyildiz B, Bozoklu M, Kilic D 206

Comparison of Two Techniques in Phacoemulsification: Hydroimplantation and Viscoimplantation

Ayaz Y, Ilhan HD, Erkan Pota C, Atlahan YS, Unal M 211

Long-term Outcomes of Trabeculectomy Versus Ahmed Glaucoma Valve Implantation in Vitrectomized Eyes

Gumus Akgun G, Alagoz N, Cakir I, Altan C, Balci AS, Dogan YS, et al 218

A 5-Year Analysis of Optical Coherence Tomography Biomarkers in The Visual Outcomes of an As-Needed Treatment Algorithm for Neovascular Age-Related Macular Degeneration

Candan O, Uney G, Hazirolan D, Unlu N, Acar MA 226

The Role of Botulinum Toxin in Dry Eye Disease and Meibomian Gland Dysfunction Associated with Hemifacial Spasm

Altin Ekin M 235

A Novel Multimodal Large Language Model for Interpreting Image-Based Ophthalmology Case Questions: Comparative Analysis of Multiple-Choice and Open-Ended Response

Kiyat P, Kahraman HG 244

SURGICAL TECHNIQUE

Large Inferior Rectus Recession without Lower Eyelid Retraction in Thyroid Eye Disease

Gokyigit B, Inal A, Gurez C 250

CASE REPORTS

Tamoxifen Retinopathy and Macular Telangiectasia Type 2: Case-Based Differential Diagnosis

Erdem A, Acar Duyan S 254

An Ophthalmic Entity More Than Liver Disease, Alagille Syndrome: A Genetically Confirmed Case Report

Ogreden T 258

Subject: Great News for the Turkish Ophthalmology Community! 262

Efficacy and Safety of Topical Insulin Eye Drops for Corneal Epithelial Defects: A Systematic Review, Meta-Analysis, and Grading of Recommendations Assessment, Development, and Evaluation Assessment

Muhammad Alfatih,¹ Christina Wunardi,² Alfiani Zukhruful Fitri Rifa'i³

¹Universitas Indonesia, Faculty of Medicine, Jakarta, Indonesia

²Universitas Gadjah Mada, Faculty of Medicine, Public Health, and Nursing, Yogyakarta, Indonesia

³Universitas Airlangga, Faculty of Medicine, Surabaya, Indonesia

Abstract

Objectives: The aim of this study was to review and meta-analyze the efficacy and safety of topical insulin eye drops (TIED) in treating corneal epithelial defects (CED).

Methods: We registered the protocol in PROSPERO (CRD420251051879). A systematic literature search on PubMed, Cochrane, ScienceDirect, Scopus, and Google Scholar until May 2025 was done to identify controlled comparative studies. Outcomes of interest include time to complete re-epithelialization, re-epithelialization rate, treatment failure, recurrence, and adverse events. We performed meta-analysis using a random-effects model and assessed the certainty of evidence for each result using Grading of Recommendations Assessment, Development, and Evaluation (GRADE) assessment.

Results: Seven studies involving 238 patients were included in the analysis. TIED significantly shortened re-epithelialization time (mean difference [MD] -1.20 days [-1.71--0.69], $p<0.0001$) and accelerated the healing rate (MD +0.26 mm²/h [0.10–0.42], $p=0.002$). In addition, TIED significantly reduced the risk of treatment failure (risk ratio [RR] 0.30 [0.16–0.57], $p=0.003$) and recurrence (RR 0.25 [0.11–0.56], $p=0.0007$) compared to conventional treatments, with no adverse events reported. GRADE assessments indicated very low to low certainty of evidence.

Conclusion: TIED may speed corneal healing, cut failures and recurrences, and is well-tolerated and inexpensive. Robust randomized controlled trials are still needed to nail down the optimal dosing, long-term safety, and its role in CED management.

Keywords: Corneal epithelial defect, Corneal wound healing, Ocular surface disease, Topical insulin

Introduction

Corneal epithelial defects (CED) – breaks in the cornea's outermost layer – predispose patients to infection, stromal scarring, persistent epithelial defect (PED), and permanent

vision loss (1). The epidemiologic burden is substantial: PED affects around 245,000 patients in 2023 across the United States, Japan, and the five largest European countries (France, Germany, Italy, Spain, and the United Kingdom) (2). In an

How to cite this article: Alfatih M, Wunardi C, Rifa'i AZF. Efficacy and Safety of Topical Insulin Eye Drops for Corneal Epithelial Defects: A Systematic Review, Meta-Analysis, and Grading of Recommendations Assessment, Development, and Evaluation Assessment. Beyoglu Eye J 2025; 10(4): 195-205.

Address for correspondence: Muhammad Alfatih, MD. Universitas Indonesia, Faculty of Medicine, Jakarta, Indonesia

Phone: +62-81379775996 **E-mail:** alfatih.ophthalmology@gmail.com

Submitted Date: June 14, 2025 **Revised Date:** August 07, 2025 **Accepted Date:** September 18, 2026 **Available Online Date:** January 19, 2026

Beyoglu Eye Training and Research Hospital - Available online at www.beyoglueye.com

OPEN ACCESS This is an open access article under the CC BY-NC license (<http://creativecommons.org/licenses/by-nc/4.0/>).

Iranian population study, almost half of adults ≥ 60 years had some corneal abnormality, with punctate epithelial defects present in 8.8% (3). Etiologies include trauma, infection, and ocular surgery (incidence after vitrectomy up to 22.4%,(4) neurotrophic keratopathy, and systemic diseases such as diabetes mellitus) (5,6).

Conventional therapy – preservative-free lubricants, topical antibiotics, bandage contact lenses, and autologous serum – often provides incomplete or delayed healing, particularly when corneal innervation or tear stability is compromised (7,8). Consequently, more effective, regenerative treatments are needed. Topical insulin eye drops (TIEDs) have emerged as a promising option, especially for refractory or neurotrophic CED. Beyond glucose regulation, insulin acts as a growth factor that stimulates CE proliferation, migration, and survival and suppresses ocular-surface inflammation (9,10). In diabetic animal models, it shows an effect of up-regulating Ki-67, lowering inflammatory cytokines, and reducing neutrophil infiltration, while also promoting corneal-nerve regrowth and elevating neuropeptides (neuropeptides substance P [SP] and calcitonin gene-related peptide [CGRP]) that modulate inflammation and oxidative stress (11).

Clinical data corroborate experimental work, as several trials showed that TIED reliably shrinks epithelial-defect area, speeds re-epithelialization in refractory PED of varying sizes, and lowers recurrence of recurrent erosions – all with excellent tolerance and safety profiles (12,13). Yet, dosing protocols and long-term safety still need definition, and the published evidence remains fragmented across small, heterogeneous trials (14-17). To resolve these gaps, we performed a systematic review and meta-analysis comparing TIED with conventional therapy for CED, focusing on time to complete healing, overall healing rate, treatment failure, recurrence, and adverse events.

Methods

We registered the protocol for this systematic review and meta-analysis in the International Prospective Register of Systematic Reviews (PROSPERO: CRD420251051879) and adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (18).

Eligibility Criteria

We selected studies through clearly defined inclusion and exclusion criteria. Eligible designs encompassed randomized or non-randomized controlled trials (RCTs) and prospective or retrospective comparative cohort studies. Any study enrolling patients – regardless of age – with CED (including PED, neurotrophic keratopathy, or post-operative epithelial breakdown) qualified for review. The intervention of interest was TIED, whether administered

as a stand-alone therapy or as an adjunctive treatment to conventional care. Comparators had to comprise standard treatments such as artificial tears, autologous serum, bandage contact lenses, or other topical agents. To ensure consistency, when a single article contained multiple TIED formulations or control arms that fit our criteria, we combined those arms into one composite group for the primary analysis; we then tested the robustness of this decision by conducting sensitivity analyses in which the arms were re-separated and all possible pairings were analyzed independently (19).

A study needed to report at least one clinically relevant endpoint – time to complete re-epithelialization, rate of re-epithelialization, treatment failure or non-healing, recurrence of epithelial defects, or adverse events attributable to TIED – to be included. Only abstracts in English were considered, and if the full-text was in another language, we used DeepL (DeepL SE, Cologne, Germany) (20) to translate it. We excluded studies without a comparison group; case reports, case series, letters to editors, conference abstracts, expert opinions, and review articles; as well as animal or in vitro investigations. Duplicate publications or data subsets already incorporated into more comprehensive reports were likewise removed from consideration.

Literature Search and Study Selection

We performed a systematic search on PubMed, the Cochrane Central Register of Controlled Trials, ScienceDirect, Scopus, and Google Scholar from database inception to May 5, 2025 (last searched: May 5, 2025). The full search strings for each database are listed in Supplementary Table S1. Search strings combined relevant keywords and MeSH terms for “corneal epithelial defects,” “topical insulin,” “re-epithelialization,” and “recurrence,” joined with Boolean operators (“AND,” “OR”). Reference lists of all included studies were hand-searched, and the first author performed an additional manual search to capture records not indexed in the databases. No limits on publication year or language were applied at the search stage. All records were imported into Rayyan (Qatar Computing Research Institute, Doha, Qatar), (21) where duplicates were removed. Two reviewers (CW and AZ) independently screened titles and abstracts, followed by full-text assessment of potentially eligible studies; disagreements were settled by discussion or, when necessary, adjudication by another reviewer (MA).

Data Extraction and Risk of Bias (RoB) Assessment

Two reviewers (CW and AZ) independently extracted study details – author, year, setting, design, sample size, demographics, defect etiology and size – and key outcomes (time and rate of re-epithelialization, treatment failure, recurrence, and adverse events). They evaluated RoB using the Cochrane

RoB 2 tool (22) for RCT, where domains of assessment include randomization, intervention deviations, missing data, outcome measurement, and selective reporting. For non-randomized studies, the Risk Of Bias In Non-randomized Studies – of Interventions (ROBINS-I) tool (23) was used, which assessed bias due to confounding, participant selection, intervention classification, deviations, missing data, outcome measurement, and selective reporting. Disagreements were resolved by consensus, with a third reviewer (MA) adjudicating when required.

Data Synthesis and Analysis

We summarized study characteristics in a descriptive table that listed study design, country, CED etiology, patient groups, age, sex, number of eyes, insulin dose regimen, baseline epithelial-defect area, primary outcomes, and a brief results summary. We synthesized all remaining qualitative information narratively.

Statistical Analysis Process

We performed all meta-analyses in RStudio (v 2024.04.2, Posit Software, Boston, MA, USA). For continuous outcomes, time to complete re-epithelialization and re-epithelialization/healing rate, we expected between-study variation in definitions. Therefore, we extracted each study's measurement techniques and intervals for these two outcomes (Supplementary Table S2) and used these to guide pooling versus narrative synthesis. If the variation is large, we consider synthesizing them narratively rather than pooling. Otherwise, we pooled the data as mean differences (MD) (95% confidence interval [CI]) using inverse-variance weighting in a random-effects model. For dichotomous outcomes, treatment failure and recurrence, we calculated pooled risk ratios (RR) with the Mantel-Haenszel method and a Paule-Mandel random effect, adding a 0.5 continuity correction to zero-event cells.(24)

To quantify heterogeneity, we calculated Cochran's Q, I², and τ² with Q-profile confidence intervals, interpreting I² values of 25%, 50%, and 75% as low, moderate, and high heterogeneity, respectively.(25) Where applicable, we explored heterogeneity with prespecified subgroup meta-analyses – surgical versus non-surgical etiology, dose-defined insulin concentration, and diabetes status – according to what each trial reported. We fitted random-effects models within each stratum and used a X² test for between-subgroup differences when both strata contained ≥2 studies; otherwise, we reported findings narratively. When a trial included multiple eligible insulin or comparator arms, we combined arms in the primary analysis to avoid double-counting and, in sensitivity analyses, re-separated the arms, and evaluated all valid pairings (19).

To assess design effects, for outcomes that mixed ran-

domized and non-randomized evidence, we re-ran the meta-analysis using RCTs only. We did not pursue Bayesian or quality-weighted models because, with so few trials, posterior inferences would hinge on unverifiable priors for τ² and the effect, adding assumptions without commensurate information. We, therefore, relied on the RCT-only restriction and discussed residual confounding from observational cohorts in the discussion (24). When at least ten studies are available, we explored publication bias with funnel plots and Egger's test; (26) if fewer qualify, we reviewed study characteristics qualitatively to uncover selective reporting or design-related bias. We also performed the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) assessment (27) to assess the certainty of evidence from every synthesis.

Ethical Approval

Due to the nature of this study, which uses secondary anonymous data from the published literature, the Health Research Ethics Committee of the Faculty of Medicine at Universitas Indonesia have confirmed that this study was exempted from review for ethical approval. This study also follows the Tenets of the Declaration of Helsinki (2013 version).

Results

Literature Search

We found 554 search records in total, and through the rigorous selection process, we ultimately included seven studies (13-17,28,29). Figure 1 contains the PRISMA flow chart of this study.

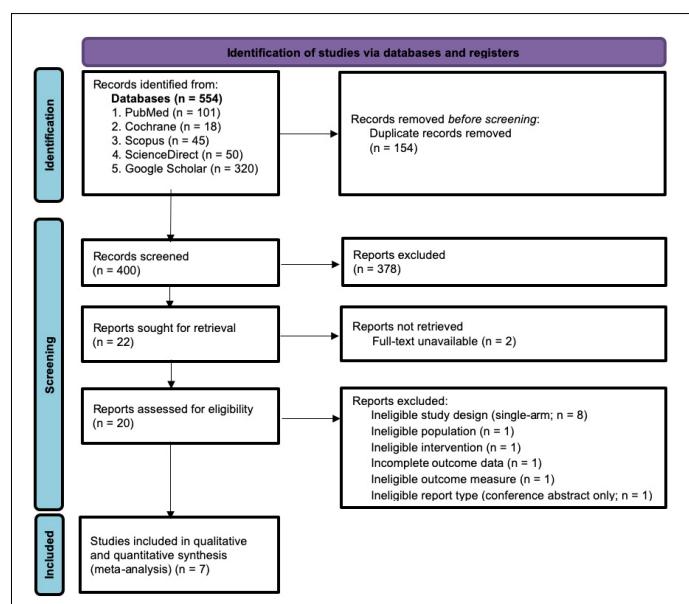
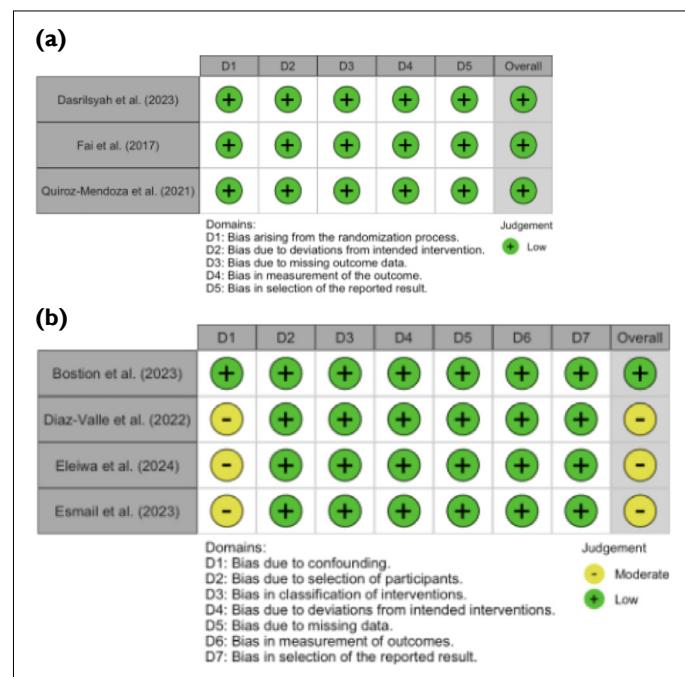


Figure 1. PRISMA flow chart of the study selection process.

Study Characteristics

Seven studies (266 eyes) got included in this systematic review and meta-analysis. The studies were conducted across diverse geographical regions, including Malaysia, Egypt, Spain, Mexico, and the United States, and encompassed a range of study designs: three RCTs, (14,15,28) two retrospective case-control studies, (16,29) one retrospective cohort study, (17) and one prospective non-RCT (13). The most common etiology for CED was post-operative complications following vitreoretinal surgery, reported in five studies. Other etiologies included neurotrophic keratopathy, immune-mediated ocular surface disease, and post-traumatic PED. Patient ages ranged from 25 to 72 years across studies, with varying gender distributions.

All studies administered TIED at concentrations between 0.5 U and 2 U per drop, applied 2–4 times daily. Control arms included routine steroid–antibiotic packs, preservative-free lubricants such as sodium hyaluronate (SH) or cornetears gel, autologous serum, and normal saline. Baseline epithelial areas, when reported, spanned roughly 4.7 mm² in post-traumatic defects to beyond 60 mm² in large post-vitrectomy lesions. Two trials (15,28) have more than two arms design. Fai et al. (15) tested 0.5, 1, and 2 IU/drop; we combined these three arms into one arm in for the meta-analysis. Meanwhile, Quiroz-Mendoza et al. (28) tested 0.5 IU/drop, SH, and the combination of the previous two; we combined all arms who received 0.5 IU/drop for the meta-analysis.


RoB in Included Studies

All three RCTs (14,15,28) were rated as having a low RoB across all RoB two domains. These trials demonstrated appropriate randomization procedures, minimal deviations from intended interventions, low levels of missing outcome data, and objective outcome measurements. In addition, there was no evidence of selective outcome reporting.

Among the four non-randomized studies, one study (29) was rated as low RoB based on the ROBINS-I tool, having clearly defined participant selection and balanced intervention groups, with no major concerns across domains. The remaining three studies (13,16,17) carried a moderate overall RoB, chiefly because they did not adjust for key confounders such as defect duration or etiology, systemic disease, or prior therapy; none employed matching or multivariable adjustment. Figure 2a and b details the domain-specific ratings.

Overview of Study Results

Across every study, TIED accelerated healing, increased closure rates, and reduced recurrences. Eleiwa et al. (16) halved the median healing time to 10.9 days, whereas Diaz-Valle et al. (17) achieved an 84% epithelialization rate versus 48% in controls and cut recurrences to 11% from 43%. Esmail et al. (13) observed no recurrences with insulin compared with 21.4% in the comparator group, and four studies (14,15,28,29) consistently reported faster re-epithe-

Figure 2. (a) Risk of bias assessment using the Cochrane Risk of Bias (RoB) 2 tool. **(b)** RoB assessment using the Risk of Bias in Non-randomized Studies – of Interventions tool.

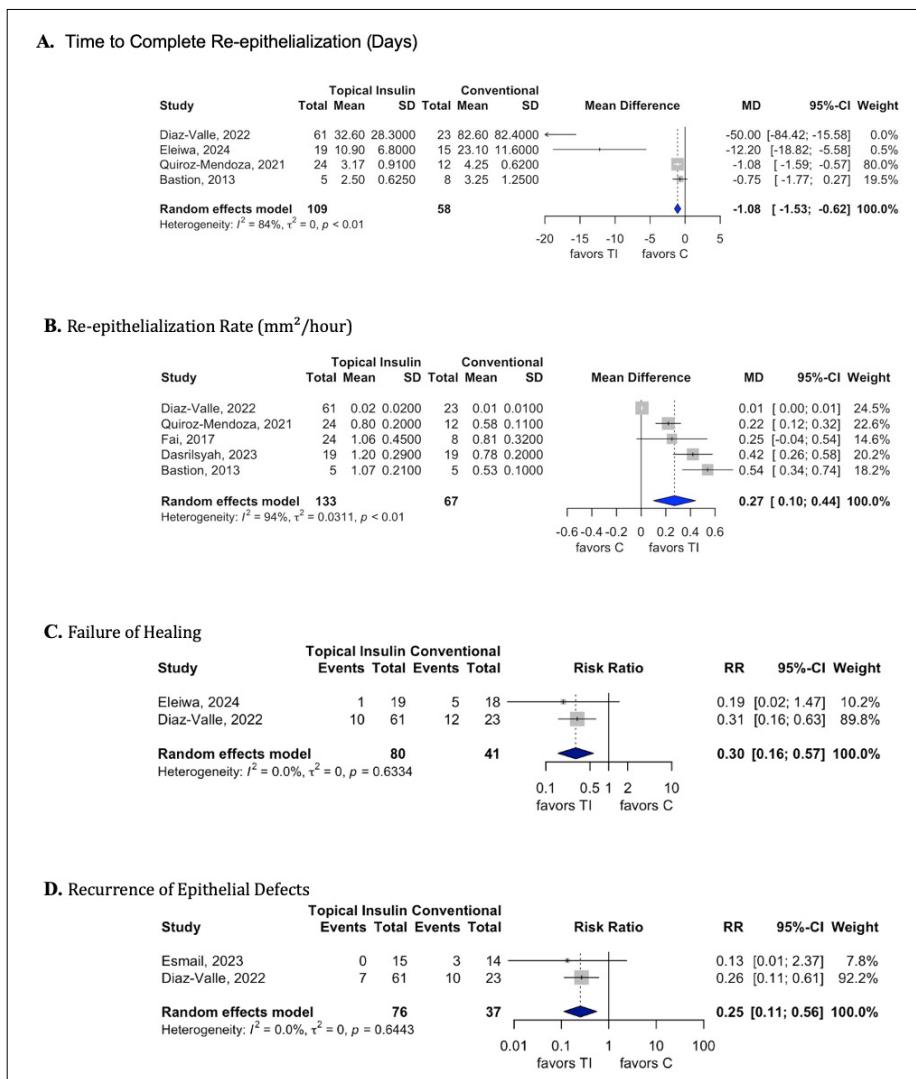
lialization or superior healing rates without compromising safety. Fai et al. (15) also observed 0.5 IU/drop as the dose with the fastest result. A summary of study characteristics is presented in Table 1.

Time to Complete Re-epithelialization (Days)

Four studies (16,17,28,29) reported data on the duration required to achieve full corneal re-epithelialization in days. Because their outcome definitions were sufficiently comparable (Supplementary Table S2), we decided to pool them. The results showed that TIED significantly reduced healing time compared to conventional therapies. The MD was -1.08 days (95% CI: -1.53 – -0.62 ; $P < 0.01$), indicating both statistically and clinically meaningful acceleration of corneal healing (Fig. 3a). High heterogeneity was detected ($I^2=84.3\%$, $\tau^2=0$, $p < 0.01$), likely attributable to variations in baseline defect size, underlying pathology, and insulin dosing protocols. Nonetheless, all included studies consistently favored TIED. No adverse effects were reported. Sensitivity analysis using all possible pairings from the original and combined arms shows similar results (Supplementary Appendix 1). We stratified by etiology (surgical vs. non-surgical; Supplementary Appendix 2) to explore heterogeneity. In the surgical subgroup, heterogeneity persisted, indicating that etiology alone did not account for the dispersion. The non-surgical subgroup contained a single study, so meta-analysis was not feasible, and the subgroup-difference test was not interpretable. Overall, etiology stratification did not resolve

Table 1. Characteristics of included studies comparing topical insulin eye drops vs. standard treatment

Study	Type	Country	Etiology of cornea epithelial defects	Group	Age (Mean, standard deviation)	Male (%)	n (eyes)	Insulin concentration and frequency	Topical non-insulin treatments (agents and frequency)		Baseline epithelial defect area (mm ²)	Outcomes	Result summary
									Non-SOC	SOC			
Bastion, 2013 (29)	RCCS	Malaysia	Surgery (vitrectomy)	Topical insulin+SOC	49.00±11.57	60.0	5	50 IU/mL (1 IU/drop; 20 µL/drop) – QID	-	• Dexamethasone 0.1% – q2h; • Ciprofloxacin HCl 0.3% – q2h in the first week after surgery, then tapered	63.92±12.63	Time to re-epithelialization, healing rate, recurrence, adverse events	Significantly shorter healing time in insulin group; no adverse events reported
				SOC	56.40±9.99	40.0	5	-	-	-	63.14±12.40		
Dasrilsyah, 2023 (14)	RCT	Malaysia	Surgery (vitrectomy)	Topical insulin+SOC	57.05±12.33	42.1	19	25 IU/mL (0.5 IU/drop; 20 µL/drop) – QID	-	• Dexamethasone 0.1% – q2h; • Ciprofloxacin HCl 0.3% – q2h in the first week after surgery, then tapered; • Neomycin sulfate 3500 IU/g+Polymyxin B sulfate 6000 IU/g+Dexamethasone 0.1% gel administered after all other drops and once/night	NR	Healing rate (mm ² /h), complete re-epithelialization time, safety	Insulin group had significantly higher healing rate, no adverse events
				Topical SH+SOC	58.63±9.24	63.2	19	-	SH 0.18% – QID	-	NR		
Diaz-Valle, 2022 (17)	RCS	Spain	Infectious, neurotrophic, immunomediated	Topical insulin	71.50±19.30	42.6	61	1 IU/mL (NR IU/drop; NR µL/drop) – QID	-	NR	14.8±16.2	Epithelialization rate, time to healing, AMT	Higher epithelialization rate (84% vs. 48%), lower recurrence (11% vs. 43%) in insulin group
				Topical autologous serum	72.30±17.90	34.7	23	-	Autologous serum 20% – QID	-	18.6±15.0		
Eleiwa, 2024 (16)	RCCS	Egypt	Surgery (vitrectomy)	Topical insulin+SOC	49.30±8.60	57.9	19	50 IU/mL (1 IU/drop; 20 µL/drop) – QID	-	• PF-L (SH 1 mg+Carboxymethyl cellulose 5 mg+Glycerin 9 mg; single dose unit) – 6x/day • Moxifloxacin 0.5% +prednisolone acetate 1% – tapered (starting frequency NR)	NR	Time to healing, AMT requirement, safety	Mean healing 10.9 vs. 23.1 days; fewer AMTs and failures in insulin group
				SOC	52.50±10.70	55.5	18	-	-	NR			
Esmail, 2023 (13)	NRCT	Egypt	Post traumatic PED	Topical insulin+SOC	29.00±8.72	40.0	15	1 IU/mL (NR IU/drop; NR µL/drop) – QID	-	• Cornetears gel – QID; • Gatifloxacin 0.5% – QID	4.93±1.75	Area improvement, recurrence rate	0% recurrence in insulin vs. 21.4% in control; significant area improvement
				SOC	25.00±7.58	35.7	14	-	-	-	4.71±1.86		
Fai, 2017 (15)	RCT	Malaysia	Surgery (vitrectomy)	Topical insulin+SOC	62.62±5.99	87.5	8	25 IU/mL (0.5 IU/drop; 20 µL/drop) – QID	-	• Dexamethasone 0.1% – q2h; • Ciprofloxacin HCl 0.3% – q2h in the first week after surgery, then tapered	62.52±57.16	Healing rate (mm ² /h), complete healing	0.5 U/d best efficacy (100% healed in 72h); safe
					56.12±7.77	75.0	8	50 IU/mL (1 IU/drop; 20 µL/drop) – QID	-	-	57.16±26.43		
					55.75±6.64	62.5	8	100 IU/mL (2 IU/drop; 20 µL/drop) – QID	-	-	59.50±10.04		
				Normal saline+SOC	60.00±10.98	37.5	8	-	0.9% normal saline – QID	-	60.32±12.92		
Quiroz-Mendoza, 2021 (28)	RCT	Mexico	Surgery (vitrectomy)	Topical insulin+SOC	51.5 (47-55)	41.7	12	25 IU/mL (0.5 IU/drop; 20 µL/drop) – QID	-	• Prednisolone acetate 1% – q4h; • Gatifloxacin 0.3% – q4h in the first week after surgery, then tapered	56.4±9.5	Time to complete healing, defect area	Faster healing in insulin group; combo not superior, no adverse events
				SH+SOC	56 (53.5-60)	41.7	12	-	SH 0.15% – 6x/day	-	58.1±8.9		
				Topical insulin+SH+SOC	55 (50.5-64)	58.3	12	25 IU/mL (0.5 IU/drop; 20 µL/drop) – QID	SH 0.15% – 6x/day	-	57.2±8.9		


RCT: Randomized controlled trial, RCCS: Retrospective case-control study, RCS: Retrospective cohort study, NRCT: Non-randomized controlled trial, SH: Sodium hyaluronate, SOC: Standard of care, QID: Quater in die (4 times daily), q2h: Quaque 2 hora (every 2 h), q4h: Quaque 4 hora (every 4 h), NR: Not reported, PF-L: Preservative-free lubricants, IU: International unit, AMT: Amniotic membrane transplantation, PED: Persistent epithelial defects

the between-study variability and should be viewed as exploratory.

Re-epithelialization Rate (mm²/hour)

Five studies (14,15,17,28,29) assessed the rate of CE regeneration represented as area of re-epithelialization/hours (mm²/h). Because their outcome definitions were sufficiently comparable (Supplementary Table S2), we decided to pool them. We performed the meta-analysis where the data from Fai et al.(15) and Quiroz-Mendoza et al.(28) are from the combined arms and found that TIED significantly enhanced re-epithelialization rate, with a pooled MD of +0.27 mm²/h (95% CI: 0.10 to 0.44; p<0.01) (Fig. 3b). Substantial heterogeneity was noted ($I^2 = 94\%$, $\tau^2 = 0.03$, p<0.01), likely due to variations in methodological design, insulin concentration, and wound measurement techniques. Despite this, all studies demonstrated a positive

effect favoring TIED. Sensitivity analysis using all possible pairings from the original and combined arms shows similar results (Supplementary Appendix 3). We also performed the subgroup analysis to break down the heterogeneity using studies surgical etiology versus non-surgical etiology (Supplementary Appendix 2), and it turned out that the amount of heterogeneity in the pooling result using all studies with surgical etiology is still large. Using another subgroup comparison (studies with insulin concentration of 25 IU/mL [0.5 IU/drop] vs. non-25 IU/mL [non-0.5 IU/drop]), the heterogeneity slightly decreased in the group of studies with insulin concentration of 25 IU/mL (0.5 IU/drop), where the $I^2 = 55\%$. Although a fixed-effect comparison suggested a difference between subgroups ($\chi^2 = 43.6$, p<0.01), the random-effects test, which accounts for substantial within-subgroup heterogeneity ($I^2 = 95\%$), showed no signifi-

Figure 3. (a-d) Forest plots of meta-analyses comparing topical insulin eye drops versus conventional therapies for corneal epithelial defects.

All outcomes were analyzed using random-effects models. Horizontal lines represent 95% confidence intervals; diamonds represent pooled effect estimates. TI = topical insulin; C = conventional treatment.

cant difference ($X^2 = 0.03$, $p=0.87$). We, therefore, found no convincing evidence that the treatment effect varies between the subgroups. Meanwhile, in the RCT-only sensitivity analysis (Supplementary Appendix 3), the re-epithelialization rate remained higher with TIED (MD 0.30 mm²/h, 95% CI 0.15–0.44). Heterogeneity was moderate ($I^2 = 54\%$), while Cochran's Q was non-significant ($p=0.11$), a common discordance with only three trials, because Q has low power; we, therefore, interpret heterogeneity mainly from I^2/τ^2 .

Failure of Healing

Two studies (16,17) contributed data on failure of epithelial healing, defined as the persistence of epithelial defects despite intervention. A random-effects model revealed that TIED significantly reduced the treatment failure risk, with a pooled RR of 0.30 (95% CI: 0.16 to 0.57; $p=0.0003$) (Fig. 3c). We found no heterogeneity ($I^2 = 0\%$, $\tau^2 = 0$, $p=0.6334$), suggesting consistency across studies.

Recurrence of Epithelial Defects

Recurrence rates were reported in two studies (13,17). Pooled analysis indicated that TIED significantly decreased recurrence, with an RR of 0.25 (95% CI: 0.11–0.56; $p=0.0007$), representing a 75% reduction in recurrence compared to controls (Fig. 3d). There was no detected ($I^2 = 0\%$, $\tau^2 = 0$, $p=0.6443$), further reinforcing the consistency of findings.

Adverse Events

There were no major adverse effects reported in any of the included studies. Across all trials, TIED was well tolerated with no systemic or local safety concerns documented. This seem-

ingly clean profile is reassuring but not definitive. All studies were small and short, leaving them underpowered to detect rare or delayed toxicities such as late corneal neovascularization or epithelial hyperplasia. Sparse follow-up after epithelial closure further limits confidence. Future RCTs should predefine and grade ocular and systemic adverse events, maintain active surveillance for at least 6–12 months, and use masked adjudication so that a robust safety margin for TIED can be established.

Publication Bias

Due to the limited number of studies per comparison ($n < 10$), we did not perform publication bias analysis, as small-study effects tests such as Egger's test lack statistical power in this context. However, study characteristics were systematically reviewed to identify potential sources of bias.

GRADE Assessment

Using the GRADE framework, we rated the certainty of every pooled estimate in this review as low to very low. We downgraded the evidence chiefly for four reasons. First, several studies carried an appreciable RoB. Second, most analyses rested on small sample sizes, which heightens the chance of undetected publication bias and widens confidence intervals, generating imprecision. Third, high between-study heterogeneity in several outcomes signaled inconsistency. Finally, because only a handful of trials contributed data to each comparison, the results remain fragile and could shift with the addition of new evidence. Table 2 presents the summary-of-findings matrix and the corresponding GRADE ratings for every meta-analytic outcome.

Table 2. Summary of findings and GRADE assessments.

Topical insulin eye drops versus conventional treatments for corneal epithelial defects			
Outcomes	Effect (95%CI)	No. of eyes (studies)	Certainty of the evidence (GRADE)
Time to complete re-epithelialization (days)	MD=−1.08, 95% CI: −1.53−−0.62, $I^2=84.3\%$	167 (4 studies)	⊕⊕⊕ Very low ^{1,2,3} Due to risk of bias among included studies (principally from the residual confounding in retrospective cohorts), the small sample size, and inconsistency
Re-epithelialization rate (mm ² /hour)	MD=0.27, 95% CI: 0.10–0.44, $I^2=94\%$	200 (5 studies)	⊕⊕⊕ Very low ^{1,2,3} Due to risk of bias among included studies (principally from the residual confounding in retrospective cohorts), the small sample size, and inconsistency
Failure of healing	RR=0.30, 95% CI: 0.16–0.57, $I^2=0\%$	121 (2 studies)	⊕⊕⊕ Low ^{1,2} Due to risk of bias among included studies (principally from the residual confounding in retrospective cohorts) and the small sample size
Recurrence of epithelial defects	RR=0.25, 95% CI: 0.11–0.56, $I^2=0\%$	117 (2 studies)	⊕⊕⊕ Low ^{1,2} Due to risk of bias among included studies (principally from the residual confounding in retrospective cohorts) and the small sample size

GRADE Working Group grades of evidence. High: We are very confident that the true effect lies close to that of the estimate of the effect. Moderate: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different. Low: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect. Very low: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect. 1We decided to downgrade for 1 point due to risk of bias (principally from the residual confounding in retrospective cohorts) among included studies. 2We decided to downgrade for another 1 point due to the small sample size used in the synthesis of the meta-analysis result. 3We decided to downgrade for another 1 point due to inconsistency as shown by high heterogeneity found in the meta-analysis result. GRADE: Grading of recommendations assessment, development and evaluation, RR: Risk ratios, CI: Confidence interval.

Discussion

This comprehensive meta-analysis and systematic review demonstrates that TIED represents a transformative therapeutic intervention that has superior effects in treating CED compared to conventional treatments (12,15,30). Our finding is consistent with individual clinical trials reporting complete corneal re-epithelialization within 3–25 days depending on defect size and patient characteristics (12,17,28). Several systematic reviews without meta-analysis (10,30,31) also conclude the same, revealing superior healing outcomes of TIED.

Pathomechanistic Foundations and Molecular Rationale

The clinical efficacy of TIED derives from its multifaceted molecular mechanisms that address fundamental deficiencies in diabetic corneal wound healing (32,33). Insulin activates the PI3K-Akt signaling pathway in corneal epithelial and stromal cells, promoting cellular proliferation, migration, and survival through receptor-mediated mechanisms involving both insulin receptors and insulin-like growth factor receptors (34). This pathway activation correlates directly with enhanced DNA synthesis in basal epithelial cells within 48 h post-injury, explaining the accelerated healing observed clinically (33). In addition, insulin stimulates epidermal growth factor receptor phosphorylation and extracellular signal-regulated kinase activation, creating synergistic signaling cascades that optimize cellular migration and wound closure (32,34).

The therapeutic mechanism extends to neurotropic regeneration, with TIED promoting corneal nerve recovery and neuropeptide release, including SP and CGRP (16,35). This neurotropic action addresses the fundamental pathophysiology of diabetic keratopathy, where hyperglycemia-induced basement membrane damage and advanced glycation end-product accumulation compromise epithelial-stromal interactions (36). The anti-inflammatory properties of insulin, demonstrated through reduced interleukin-1 beta expression and neutrophil infiltration, create an optimal microenvironment for sustained tissue repair (16).

Heterogeneity Sources and their Impact

The wide dispersion in healing times and rates most likely stems from differences in baseline defect size, underlying pathology, insulin dose, and measurement technique. Subgroup exploration based on etiology included an insufficient number of studies; therefore, it remains uncertain whether etiology truly modifies the effect. Yet, it was certain that etiology was not the source of heterogeneity in the two outcomes: Time to re-epithelialization and re-epithelialization. Healing rates were likewise similar in trials that used approximately 25 IU/mL (0.5 IU/drop) insulin and those that used higher concentrations, but the number of studies were too small to establish a dose-response gradient. A planned

comparison of diabetic versus non-diabetic eyes could not be carried out because the individual-patient data needed for that stratification were unavailable. Despite this variability, all studies consistently favored TIED, underscoring its robust therapeutic potential. Notably, TIED was effective in all patients regardless of the diabetic status, addressing a critical need given the impaired corneal healing often seen in diabetes (12,33). To reduce the residual heterogeneity presumably from unreported variation in defect chronicity, concomitant therapy, and wound-measurement methods; larger, well-reported trials that capture these covariates prospectively are required to determine definitively whether etiology, insulin concentration, or diabetes status modifies the treatment effect.

Population-specific Efficacy in the Vitreoretinal Surgery Context

The clinical relevance of TIED becomes particularly pronounced in post-vitrectomy populations, as they represent the majority of subjects included in the meta-analysis, where corneal complications affect 22.4% of patients, with 4.6% developing PED (4,37). Diabetic patients represent a uniquely vulnerable cohort, with diabetes mellitus, perfluoropropane tamponade, and surgical complexity serving as independent risk factors for PED after vitrectomy. In this high-risk population, TIED at 0.5 units/drop administered 4 times daily achieved 100% healing within 72 h, substantially outperforming placebo (62.5%) and higher concentrations (15,16). It might be due to receptor saturation kinetics that favor physiological rather than pharmacological dosing (31). This finding has profound implications for clinical implementation, as lower concentrations reduce preparation costs while maximizing therapeutic efficacy. The consistency of benefits across diabetic and non-diabetic populations, regardless of age, gender, or hypertensive status, underscores the universal applicability of insulin's regenerative mechanisms (35).

Adherence Profile and Clinical Implementation Advantages

TIED demonstrates exceptional adherence characteristics that address traditional barriers to PED management (35). The formulation's isotonic properties (280–300 mOsm/L), neutral pH (7–8), and low viscosity ensure optimal tolerability without ocular irritation, factors critical for sustained patient compliance in chronic conditions (38). The 4-times-daily dosing regimen aligns with standard ophthalmic medication schedules, facilitating integration into existing therapeutic routines without additional complexity (15,16).

A microbiological stability study confirms 28-day refrigerated storage capability with maintained insulin potency in the 90–110% range when formulated in normal saline, providing practical advantages for both compounding pharmacies

and patient use (38). The absence of systemic absorption or glycemic effects eliminates concerns regarding diabetes management interference, a significant advantage over systemic interventions (15,33). Several previous reviews also demonstrate consistent safety profiles with no specific or major adverse events (10,31,35).

Economic Considerations and Healthcare Resource Optimization

The cost-effectiveness profile of TIED presents compelling healthcare economic advantages, particularly when considered against alternative interventions such as amniotic membrane transplantation or complex surgical procedures (35). Insulin's widespread availability as a generic medication enables cost-effective compounding, with formulations prepared from commercially available subcutaneous insulin through simple dilution procedures (38). The accelerated healing timeline directly translates to reduced healthcare utilization, with mean healing times of 16.6 ± 10.8 days for compounded preparations compared to conventional therapy timelines exceeding 40 days (4,38).

The prevention of surgical interventions represents substantial cost savings, as evidenced by the elimination of amniotic membrane transplantation requirements in insulin-treated groups compared to 11% (2/18) in control populations (16). Long-term economic benefits extend beyond direct treatment costs to encompass reduced complication management, with 77% of patients achieving complete improvement and significant visual acuity gains, minimizing long-term disability costs (35).

Practical Implications: Integration into Existing Treatment Algorithms and Compounding Logistics

Practical implications from the comparative studies are modest but clear. TIED were used as an adjunct to standard care for difficult or postoperative epithelial defects, rather than as monotherapy (14,15,17). The most common regimen was ~ 0.5 U/drop 4 times daily, prepared by diluting U-100 regular insulin to ~ 25 IU/mL; higher concentrations were also studied, but available trials do not establish a dose-response advantage over 0.5 U/drop (14,15,28). Patients were typically reviewed within 24–72 h with fluorescein photography to document the defect area, then followed at least weekly until closure; rescue measures (bandage lens or surgery) were considered when improvement failed over about a week (15,28,29). Compounding in these studies was aseptic and pharmacy-led, using regular insulin in 0.9% saline, dispensed in sterile ophthalmic droppers, refrigerated, and in some protocols replaced every ~ 3 days – practical details that hospitals or licensed compounders can reproduce while applying local beyond-use dating (15,28). Safety reporting was reassuring but short-term: Across controlled studies, no systemic hypoglycemia or vision-threatening events were attributed to TIED, yet small samples and limited follow-

up mean uncommon or delayed harms cannot be excluded (14,15,17). Stability data from compounding research support refrigerated saline formulations, but real-world sterility and potency monitoring remain advisable (38).

Taken together, current evidence supports considering TIED as an early adjunct when post-operative or PED are not responding with standard measures, coupled with early reassessment, pharmacy-standard compounding, and prompt escalation if the epithelial area fails to decrease (14,15,17).

Strengths and Limitations of this Study and Future Research Recommendations

This appears to be the first meta-analysis synthesizing controlled human data on TIED for CED. Evidence is still thin: Only seven studies qualified, and few reported dichotomous outcomes such as recurrence or treatment failure. Several pooled estimates showed substantial heterogeneity, likely driven by variations in insulin formulation, dosing, defect etiology, and follow-up duration. Most trials provided only short-term data, and long-term efficacy and safety remain uncertain. Three studies were non-randomized, leaving residual confounding despite ROBINS-I assessment.

Future research should adopt standardized outcome definitions and uniform insulin preparations, recruit larger cohorts, extend follow-up, and incorporate patient-centered endpoints (visual acuity and quality of life). Well-designed RCTs comparing dose regimens and exploring combination therapies (e.g., insulin plus hyaluronic acid or autologous serum) could also clarify optimal strategies and mechanisms, including effects on corneal nerve regeneration. Concretely, future trials should be multicenter, parallel-group RCTs with concealed allocation and blinding (participants, clinicians, and image graders) using identical vehicles/labels. Use multi-arm or factorial designs for dose or add-on questions, with stratified randomization by etiology (post-surgical vs. neurotrophic/other) and diabetes status. Standardize and report compounding procedures, cold-chain handling, and bottle-replacement schedules. Employ centrally read, image-based outcomes: Time to complete re-epithelialization (no fluorescein staining on two exams ≥ 24 h apart) and re-epithelialization rate (mm^2/h) from calibrated planimetry on a fixed schedule; also report proportion healed by certain timepoints (e.g. day 7/14 or further), need for rescue, recurrence at 1/3 months or further, Ocular Surface Disease Index (OSDI) score, and visual acuity, with ≥ 6 –12 months' follow-up. Predefine and report adverse-event categories with masked adjudication. Analyze by intention-to-treat, specify handling of two eyes per patient, adjust for baseline area/etiology/diabetes, and power for a clinically meaningful difference. For transparent reporting, register a protocol and publish a prespecified statistical analysis plan.

Conclusion

TIED emerges from this review as a promising, well-tolerated therapy that speeds corneal re-epithelialization, boosts overall healing, and lowers both treatment failures and recurrences across varied patient groups and defect etiologies. Readily available, inexpensive, and mechanistically compelling, TIED may serve as an adjunct – or even an alternative – to current CED treatment. Nonetheless, larger, rigorously designed trials are still needed to clarify the optimal dose and schedule, document long-term safety and durability, and anchor TIED within evidence-based guidelines for managing CED.

Supplementary: [https://jag.journalagent.com/beyoglu/abs/files/BEJ-00821/BEJ-00821_\(2\)_Supplementary_Tables.pdf](https://jag.journalagent.com/beyoglu/abs/files/BEJ-00821/BEJ-00821_(2)_Supplementary_Tables.pdf)

Disclosures

Conflict of Interest: None declared.

Funding: The author declared that this study has received no financial support.

Use of AI for Writing Assistance: None declared.

Author Contributions: Concept – C.W.; Design – C.W., M.A.; Supervision – M.A.; Resource – M.A.; Data Collection and/or Processing – C.W., A.Z.F.R.; Analysis and/or Interpretation – C.W., M.A.; Literature Search – C.W.; Writing – C.W., A.Z.F.R.; Critical Reviews – M.A.

Peer-review: Externally peer-reviewed.

References

- Vaidyanathan U, Hopping GC, Liu HY, Somanı AN, Ronquillo YC, Hoopes PC, et al. Persistent corneal epithelial defects: A review article. *Med Hypothesis Discov Innov Ophthalmol* 2019;8:163–76.
- Delveinsight. Persistent epithelial defects treatment market size, drugs [Internet]. Delveinsight; 2024. Available at: <https://www.delveinsight.com/report-store/persistent-epithelial-defect-market>. Accessed June 13, 2025
- Hashemi A, Hashemi H, Aghamirsalim M, Jamali A, Khabazkhoob M. Prevalence of certain corneal conditions and their demographic risk factors; Tehran Geriatric Eye Study. *Arch Iran Med* 2024;27:414–20. [\[CrossRef\]](#)
- Chen HF, Yeung L, Yang KJ, Sun CC. Persistent corneal epithelial defect after pars plana vitrectomy. *Retina* 2016;36:148. [\[CrossRef\]](#)
- Cisarik-Fredenburg P. Discoveries in research on diabetic keratopathy. *Optom St Louis Mo* 2001;72:691–704.
- Jan RL, Tai MC, Ho CH, Chu CC, Wang JJ, Tseng SH, et al. Risk of recurrent corneal erosion in patients with diabetes mellitus in Taiwan: a population-based cohort study. *BMJ Open* 2020;10:e035933. [\[CrossRef\]](#)
- Jeng BH, Dupps WJ. Autologous serum 50% eyedrops in the treatment of persistent corneal epithelial defects. *Cornea* 2009;28:1104–8. [\[CrossRef\]](#)
- Katzman LR, Jeng BH. Management strategies for persistent epithelial defects of the cornea. *Saudi J Ophthalmol* 2014;28:168–72. [\[CrossRef\]](#)
- Jaworski M, Lorenc A, Leszczyński R, Mrukwa-Kominek E. Topical insulin in neurotrophic keratopathy: A review of current understanding of the mechanism of action and therapeutic approach. *Pharmaceutics* 2023;16:15. [\[CrossRef\]](#)
- Krolo I, Behaegel J, Termote K, de Bruyn B, De Schepper M, Oellerich S, et al. The role of topical insulin in ocular surface restoration: A review. *Surv Ophthalmol* 2024;69:805–17. [\[CrossRef\]](#)
- Chen S, Li Y, Song W, Cheng Y, Gao Y, Xie L, et al. Insulin eye drops improve corneal wound healing in STZ-induced diabetic mice by regulating corneal inflammation and neuropeptide release. *BMC Ophthalmol* 2024;24:155. [\[CrossRef\]](#)
- Abdi P, Ghaffari R, Azad N, Alshaheeb A, Latifi G, Soltani Shahgoli S, et al. Topical insulin for refractory persistent corneal epithelial defects. *Sci Rep* 2024;14:12459. [\[CrossRef\]](#)
- Esmail A, Ibrahim M, Nage S. Efficacy of topical insulin for recurrent epithelial corneal erosions. *Ir J Med Sci* 2023;192:3117–23. [\[CrossRef\]](#)
- Dasrlisyah AM, Wan Abdul Halim WH, Mustapha M, Tang SF, Kaur B, Ong EY, et al. Randomized clinical trial of topical insulin versus artificial tears for healing rates of iatrogenic corneal epithelial defects induced during vitreoretinal surgery in diabetics. *Cornea* 2023;42:1395–403. [\[CrossRef\]](#)
- Fai S, Ahem A, Mustapha M, Mohd Noh UK, Bastion MC. Randomized Controlled Trial of Topical Insulin for Healing Corneal Epithelial Defects Induced During Vitreoretinal Surgery in Diabetics. *Asia Pac J Ophthalmol (Phila)* 2017;6:418–24.
- Eleiwa TK, Khater AA, Elhusseiny AM. Topical insulin in neurotrophic keratopathy after diabetic vitrectomy. *Sci Rep* 2024;14:10986. [\[CrossRef\]](#)
- Diaz-Valle D, Burgos-Blasco B, Rego-Lorca D, Puebla-Garcia V, Perez-Garcia P, Benitez-Del-Castillo JM, et al. Comparison of the efficacy of topical insulin with autologous serum eye drops in persistent epithelial defects of the cornea. *Acta Ophthalmol* 2022;100:e912 9. [\[CrossRef\]](#)
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 2021;372:n71. [\[CrossRef\]](#)
- Axon E, Dwan K, Richardson R. Multiarm studies and how to handle them in a meta-analysis: A tutorial. *Cochrane Evid Synth Method* 2023;1:e12033. [\[CrossRef\]](#)
- Naveen P, Trojovský P. Overview and challenges of machine translation for contextually appropriate translations. *iScience* 2024;27:110878. [\[CrossRef\]](#)
- Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. *Syst Rev*

2016;5:210. [\[CrossRef\]](#)

22. Flemng E, Moore TH, Boutron I, Higgins JP, Hróbjartsson A, Nejstgaard CH, et al. Using Risk of Bias 2 to assess results from randomised controlled trials: guidance from Cochrane. *BMJ Evid Based Med* 2023;28:260–6. [\[CrossRef\]](#)

23. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. *BMJ* 2016;355:i4919. [\[CrossRef\]](#)

24. Deeks JJ, Higgins JPT, Altman DG (editors). Chapter 9: Analysing data and undertaking meta-analyses. In: Higgins JPT, Green S (editors). *Cochrane Handbook for Systematic Reviews of Interventions*. Chichester (UK): John Wiley & Sons, 2008. [\[CrossRef\]](#)

25. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med*. 2002 May 21;21(11):1539–58. [\[CrossRef\]](#)

26. Lin L, Chu H. Quantifying publication bias in meta-analysis. *Biometrics*. 2017 Nov 15;74(3):785. [\[CrossRef\]](#)

27. GRADE handbook. Available at: <https://gdt.gradepro.org/app/handbook/handbook.html#h.qoxhi6qajv5t>. Accessed October 2, 2024

28. Quiroz-Mendoza JL, García-Roa M, Romero-Morales V, Valera-Cornejo D, Vázquez-Membrillo M, Ramírez-Neria P, et al. Clinical trial of topical insulin and sodium hyaluronate in the treatment of epithelial defects produced by intraoperative corneal epithelial debridement during pars plana vitrectomy in diabetics. *Rev Mex Oftalmol* 2021;95:63–70. [\[CrossRef\]](#)

29. Bastion MLC, Ling KP. Topical insulin for healing of diabetic epithelial defects?: A retrospective review of corneal debridement during vitreoretinal surgery in Malaysian patients. *Med J Malaysia* 2013;68:208–16.

30. Andrade LJ de O, Oliveira GCM de, França CS, Oliveira LM de. Evaluating the safety and efficacy of topical insulin for ocular disease: A systematic review. *medRxiv*. 2024 Feb 24. doi:10.1101/2024.02.24.24303321. [\[Epub\]](#) [\[CrossRef\]](#)

31. Bievel Radulescu R, Ferrari S, Stanca HT, Ponzin D. Topical insulin as a novel treatment for persistent epithelial defects and other ocular surface disorders: a systematic review. *Graefes Arch Clin Exp Ophthalmol* 2025;263:2427–45. [\[CrossRef\]](#)

32. Peterson C, Chandler HL. Insulin facilitates corneal wound healing in the diabetic environment through the RTK-PI3K/Akt/mTOR axis in vitro. *Mol Cell Endocrinol* 2022;548:111611. [\[CrossRef\]](#)

33. Zagon IS, Klocek MS, Sassani JW, McLaughlin PJ. Use of topical insulin to normalize corneal epithelial healing in diabetes mellitus. *Arch Ophthalmol* 2007;125:1082–8. [\[CrossRef\]](#)

34. Joo CK, Lee KS, Lyu J. Insulin enhances cell migration through EGFR in human corneal epithelial cells. *Invest Ophthalmol Vis Sci* 2006;47:5031.

35. Almeida J, Costa TR, Vivas M, Monteiro C, Vaz FT, Silva D, et al. Long-term Results of Topical Insulin Treatment for Persistent Corneal Epithelial Defects. *J Ophthalmic Vis Res* 2024;19:397–404. [\[CrossRef\]](#)

36. Zhao H, He Y, Ren YR, Chen BH. Corneal alteration and pathogenesis in diabetes mellitus. *Int J Ophthalmol* 2019;12:1939–50. [\[CrossRef\]](#)

37. Sepulveda-Beltran PA, Levine H, Chang VS, Gibbons A, Martinez JD. Complications in Retinal Surgery: A Review of Corneal Changes Following Vitreoretinal Procedures. *Int Ophthalmol Clin* 2022;62:65–77. [\[CrossRef\]](#)

38. Vicario-de-la-Torre M, Puebla-García V, Ybañez-García L, López-Cano JJ, González-Cela-Casamayor MA, Brugnera M, et al. Topical Insulin Eye Drops: Stability and Safety of Two Compounded Formulations for Treating Persistent Corneal Epithelial Defects. *Pharmaceutics* 2024;16:580. [\[CrossRef\]](#)

Compatibility Between the Intraocular Lens Master and Pentacam Devices in White-to-White Measurements Used in Phakic Intraocular Lens Calculations

Mine Koru Toprak,¹ Aydin Toprak,² Bekir Ayyildiz,³ Mutluay Bozoklu,³ Deniz Kilic⁴

¹Department of Ophthalmology, Giresun Prof Dr İlhan Ozdemir State Hospital, Giresun, Türkiye

²Department of Ophthalmology, Giresun University Training and Research Hospital, Giresun, Türkiye

³Department of Ophthalmology, Kayseri City Hospital, Kayseri, Türkiye

⁴Department of Ophthalmology, Duyagöz Hospital, Izmir, Türkiye

Abstract

Objectives: Measurement of white-to-white (WtW) distance is essential in the pre-operative evaluation of candidates for cataract or refractive surgery, and in determining the appropriate haptic size of newly developed phakic intraocular lenses (IOLs). This distance can be measured quickly and easily using various methods. However, inconsistencies among reported results raise concerns about whether these measurements can be used interchangeably. Although previous studies have analyzed the agreement between different devices, there has been no such study conducted at the national level. Based on this, our study aimed to analyze the agreement between WtW measurements obtained by the IOLMaster 500 and Pentacam devices for use in phakic IOL (pIOL) calculations.

Methods: A total of 66 eyes from 66 candidates for cataract or refractive surgery were included in the study. WtW distance measurements obtained from both devices were recorded and analyzed. A one-sample t-test was used to compare the mean WtW values. Bland-Altman analysis was performed to assess the agreement between the two devices.

Results: The mean age of the participants was 63.42 ± 18.27 years, and 20 (60.6%) were male. The mean WtW distances measured by the IOLMaster 500 and Pentacam were 11.80 ± 0.48 mm and 11.50 ± 0.56 mm, respectively ($p < 0.001$) (limits of agreement: Lower limit 0.19, upper limit 0.41; 95% confidence interval).

Conclusion: Our study showed that the IOLMaster 500 measured significantly higher WtW distances compared to the Pentacam. Therefore, these two devices should not be used interchangeably for WtW measurements. We recommend using the devices endorsed by the chosen pIOL manufacturer.

Keywords: Biometric measurement, IOLMaster, Pentacam, Phakic intraocular lens, White-to-white

Introduction

Measurement of the white-to-white (WtW) (limbus-to-limbus horizontal diameter) is an essential parameter in contemporary cataract and refractive surgery, involving pro-

cedures such as anterior chamber lens implantation, phakic intraocular lens (IOLs) implantation, foldable collagen lens implantation, and others (1,2). Accurate measurements play a crucial role in preventing complications such as cataract

How to cite this article: Koru Toprak M, Toprak A, Ayyildiz B, Bozoklu M, Kilic D. Compatibility Between the Intraocular Lens Master and Pentacam Devices in White-to-White Measurements Used in Phakic Intraocular Lens Calculations. Beyoglu Eye J 2025; 10(4): 206-210.

Address for correspondence: Mine Koru Toprak, MD. Department of Ophthalmology, Giresun Prof Dr İlhan Ozdemir State Hospital, Giresun, Türkiye

Phone: +90 505 051 73 77 **E-mail:** drminekoru@gmail.com

Submitted Date: May 06, 2025 **Revised Date:** August 04, 2025 **Accepted Date:** August 22, 2025 **Available Online Date:** January 19, 2026

Beyoglu Eye Training and Research Hospital - Available online at www.beyoglueye.com

OPEN ACCESS This is an open access article under the CC BY-NC license (<http://creativecommons.org/licenses/by-nc/4.0/>).

formation, endothelial loss, angle closure, malignant glaucoma, pigment dispersion, and more during the post-operative period. Various methods are employed for WtW measurements in current practice (3,4). These can range from manual measurements using calipers to imaging techniques such as ultrasound biomicroscopy, anterior segment optical coherence tomography (OCT), IOLMaster 500, and Pentacam devices (5).

The IOLMaster 500 (Carl Zeiss Meditec, Jena, Germany) is a device that utilizes a light-emitting diode light source tailored to the iris's structure. It determines the WtW distance with a swept-source OCT technology laser, calculating ocular biometric parameters (5). On the other hand, the Pentacam (Oculus, Irvine, California) is a device that generates a three-dimensional image of the anterior segment. It consists of a Scheimpflug camera rotating 180° around the optical axis of the eye, with a monochromatic light source (emitting blue light at 470 nm from a diode). The device measures the WtW distance using an iris camera optic capable of recognizing iris landmarks and determining pupil shape (6).

While various studies have analyzed the compatibility of different devices in measurements, there is currently no national study addressing this issue. Therefore, in this study, we aimed to analyze the inter-device compatibility of WtW measurements calculated using IOLMaster 500 and Pentacam devices in the context of phakic IOL (pIOL) calculations in the Turkish population.

Methods

This study was conducted in compliance with the Declaration of Helsinki and was approved by the Clinical Research Ethics Committee of Kayseri City Hospital before its initiation (Decision No: 414, dated April 15, 2025). Between the years 2021 and 2022, a retrospective evaluation was carried out on 66 eyes of 66 patients who underwent cataract surgery at Kayseri City Training and Research Hospital.

Patients with systemic diseases (such as diabetes mellitus, hypertension, thyroid-related diseases, rheumatoid arthritis, and scleroderma), those with pterygium or similar conjunctival, limbal, or corneal diseases, individuals who had previously undergone ocular surgery, and those using systemic and ocular medications were excluded from the study.

Before surgery, all included patients underwent a detailed pre-operative examination, including measurement of pre-operative refractive values, best-corrected visual acuity, and intraocular pressure with Goldmann applanation tonometry. A comprehensive biomicroscopic examination was performed, and fundus evaluation was conducted after dilation. The WtW measurements of all patients before surgery were obtained using IOLMaster 500 and Pentacam devices.

All measurements were taken in a dark room without

the use of any eye drops. Participants were instructed to place their chins on the chin rest and focus on the target light. They were asked to blink to ensure an adequate tear film on the corneal surface before each measurement. Subsequently, participants were instructed to open their eyes and minimize blinking to reduce interference with the limbus during the scan.

WtW measurements were first obtained using the IOLMaster 500, followed by the Pentacam. For each device, three consecutive measurements were taken, and the average value was used for statistical analysis. To avoid inter-eye correlation, only the right eye of each patient was included in the study.

After each capture, the quality of the scan was assessed, and only scans of acceptable quality were included. The criteria for determining "acceptable quality" were established based on the specific device used and the criteria provided by each device's manufacturer.

Statistical analyses were performed using IBM Statistical Package for the Social Sciences Statistics for Windows, Version 21.0 (IBM Corp., Armonk, NY, USA). Values were presented as numbers (%), and mean±standard deviation. $P<0.05$ was considered statistically significant. One-sample t-test was employed to compare the mean values of the WtW distances. To assess the agreement between measurements obtained from both devices, Bland-Altman analysis was utilized.

Results

A total of 66 patients (20 males and 46 females) with a mean age of 63.42 ± 18.27 were included in the study. Using the IOLMaster device, the K1 value was measured as 43.5961, K2 value as 45.299, and K-mean value as 44.4485. On the other hand, with the Pentacam, the K1 value was 43.3515, K2 value was 44.8242, and K-mean value was 44.0697. The WtW value was recorded as 11.8485 with IOLMaster 500 and 11.5303 with Pentacam (compatibility limits; 0.19 lower limit, 0.41 upper limit; 95% confidence interval), with a significant difference ($p<0.01$). Table 1 demonstrates that the WtW value measured with IOLMaster was statistically higher than the value obtained with Pentacam. The anterior chamber depth (ACD) values were recorded as 3.2345 with IOLMaster and 3.5518 with Pentacam.

No statistically significant difference was found between IOL Master and Pentacam measurements for K1, K2, K-mean, and ACD values. However, a statistically significant difference was observed in WtW measurements ($p<0.05$) (Table 2).

Figure 1 shows the Bland-Altman plot illustrating the agreement between the IOLMaster 500 and Pentacam devices for WtW measurements.

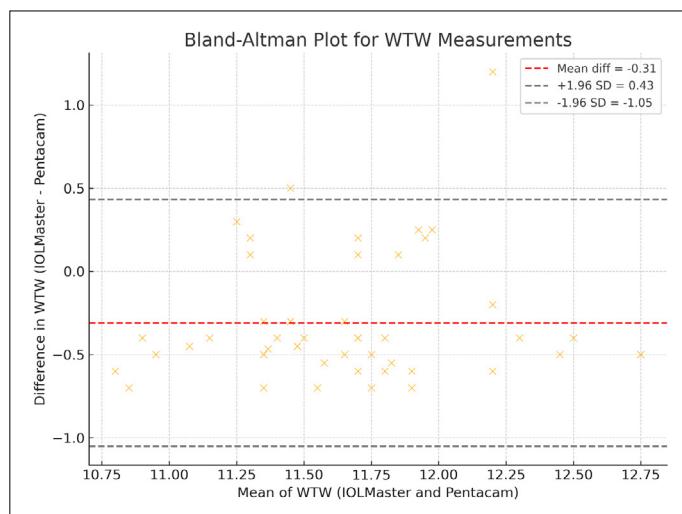
Table 1. Measurements of K1, K2, K-mean, ACD, and WtW with IOLMaster and Pentacam

	K1	K2	K-mean	ACD	WtW
IOLMaster 500					
Mean	43.5961	45.2991	44.4485	3.2345	11.8485
Standard deviation	1.83436	2.36556	1.75569	0.73162	0.50998
Pentacam					
Mean	43.3515	44.8242	44.0697	3.5518	11.5303
Standard deviation	1.81093	2.25763	1.78702	0.93293	0.57905
Mean	43.4738	45.0617	44.2591	3.3932	11.6894
Total					
Standard deviation	1.81280	2.30681	1.76807	0.84709	0.56463

IOL: Intraocular lens; ACD: Anterior chamber depth; WtW: White-to-white.

Table 2. Statistical differences in inter-device agreement of K1, K2, K-mean, ACD, and WtW measurements

	t	df	Sig. (2-tailed)	Ort. Dif	Standard deviation	95% Confidence interval of the difference	
						Lower	Upper
K1	0.545	64	0.588	0.24455	0.44871	-0.65186	1.14095
	0.545	63.989	0.588	0.24455	0.44871	-0.65186	1.14095
K2	0.834	64	0.407	0.47485	0.56923	-0.66232	1.61202
	0.834	63.861	0.407	0.47485	0.56923	-0.66237	1.61207
K-mean	0.869	64	0.388	0.37879	0.43609	-0.49241	1.24999
	0.869	63.980	0.388	0.37879	0.43609	-0.49242	1.24999
ACD	-1.537	64	0.129	-0.31727	0.20639	-0.72958	0.09503
	-1.537	60.558	0.129	-0.31727	0.20639	-0.73003	0.09548
WtW	2.369	64	0.021	0.31818	0.13432	0.04985	0.58652
	2.369	62.994	0.021	0.31818	0.13432	0.04976	0.58660


IOL: Intraocular lens; ACD: Anterior chamber depth; WtW: White-to-white.

Discussion

Precise measurements are crucial for minimizing refractive errors and preventing post-operative complications after cataract and refractive surgery. Accurate determination of the WtW distance, in particular, plays a critical role in pIOL selection. This study examined the agreement between WtW measurements obtained with the IOLMaster 500 and Pentacam devices.

In our study, significant WtW measurement differences were identified between the IOLMaster 500 and Pentacam. The IOLMaster 500 yielded significantly higher WtW values compared to the Pentacam. In the literature, a study by Ramin et al. (7) reported that the IOLMaster measurements were longer when comparing WtW mea-

surements between the IOLMaster 700 and Pentacam devices. Similarly, Sayed et al. (8) identified a 0.05 mm difference between the IOLMaster and Pentacam and attributed this difference to differences in the measurement methodologies and limbus identification methods of the two devices. Another study compared the Pentacam HR, IOLMaster 700, Anterion, and Cassini devices, reporting statistically significant differences in WtW measurements. Specifically, the Pentacam HR measurements were noted to be approximately 0.50 mm higher than those of the IOLMaster 700. These differences stem from the devices' measurement principles and the methods used to define the limbus borders. Given that pIOL sizes vary in increments of approximately 0.50 mm, a difference of this magnitude is clinically significant (3).

Figure 1. Bland-Altman plot showing the agreement between WTW measurements obtained by IOLMaster 500 and Pentacam devices. The solid line indicates the mean difference (bias), and the dashed lines represent the 95% limits of agreement (± 1.96 SD).

The mean difference was calculated as +0.32 mm (IOLMaster 500 measured higher than Pentacam), with 95% limits of agreement ranging from +0.15 mm to +0.49 mm. This figure visually supports the results of the statistical Bland-Altman analysis described in the Results section of the manuscript.

A comprehensive review analyzing the results of nine different devices measuring WtW revealed a wide range of measurement results, with mean differences ranging from 0.05 to 0.86 mm (9). Similar heterogeneity was observed in our study.

However, Shajari et al. (4) compared WtW measurements in 40 healthy eyes using four different devices (Pentacam HR, IOLMaster 500, Lenstar 900, and Visante OCT) and found no significant difference between them. Salouti et al., (3) in their study using the Pentacam HR and Orbscan IIz devices, reported statistically significant differences in mean WtW values ($p < 0.001$). They concluded that these differences were not clinically significant and suggested that the devices could be used interchangeably.

These conflicting findings in the literature indicate that WtW measurements may vary depending on the device used, which may lead to errors in pIOL calculations. The absence of such a study in our country's population increases the importance of this study.

Measurement differences can be influenced not only by the operating principles of the devices but also by light sources, optical systems, limbus identification software, light intensities, and patient-related factors (such as head tilt and changes in blink duration due to discomfort from light sources). Given that pIOL dimensions typically vary in increments of 0.5 mm, even a discrepancy of 0.2–0.3 mm between devices can lead to clinically significant errors. This

can trigger complications such as improper dome structure, risk of endothelial cell loss, pigment dispersion, or lens rotation (10,11).

Therefore, in pre-operative planning, it is crucial to use devices recommended by pIOL manufacturers and consistent with the device specifications. It is important to note that manufacturers' calculation programs are often optimized for specific devices (e.g. the IOLMaster).

Limitations of our study include the inability to analyze post-operative surgical outcomes (e.g., dome shape, refractive stability, and IOL displacement) due to the retrospective design. Furthermore, the IOLMaster 500 is an older-generation device compared to the IOLMaster 700, which may limit the generalizability of our findings to current devices. Future prospective studies incorporating the IOLMaster 700 and post-operative follow-up data will likely provide more definitive clinical guidance.

Disclosures

Presentation at a meeting: Organisation: 27th ESCRS Winter Meeting Place: Portugal Date: 10-12 March 2023.

Ethics Committee Approval: This study was approved by the Kayseri City Hospital Clinical Research Ethics Committee (Date: 15.04.2025 Number: 414).

Conflict of Interest: None declared.

Funding: The author declared that this study has received no financial support.

Use of AI for Writing Assistance: None declared.

Author Contributions: Concept – D.K.; Design – D.K.; Supervision – D.K.; Resource – B.A., M.B.; Materials – B.A., M.B.; Data Collection and/or Processing – B.A., M.B.; Analysis and/or Interpretation – M.K.T., A.T.; Literature Search – M.K.T., A.T.; Writing – M.K.T.; Critical Reviews – M.K.T., A.T., D.K.

Peer-review: Externally peer-reviewed.

References

- Yoo Y, Whang W, Kim H, Joo C, Yoon G. Preoperative biometric measurements with anterior segment optical coherence tomography and prediction of postoperative intraocular lens position. *Medicine (Baltimore)* 2019;98:e18026. [\[CrossRef\]](#)
- Fernandes P, González-Mejome JM, Madrid-Costa D, Ferrer-Blasco T, Jorge J, Montés-Micó R. Implantable collamer posterior chamber intraocular lenses: a review of potential complications. *J Refract Surg* 2011;27:765–76. [\[CrossRef\]](#)
- Salouti R, Nowroozzadeh MH, Zamani M, et al. Comparison of horizontal corneal diameter measurements using the Orbscan IIz and Pentacam HR systems. *Cornea* 2013;32:1460–4. [\[CrossRef\]](#)
- Shajari M, Lehmann UC, Kohnen T. Comparison of corneal diameter and anterior chamber depth measurements using 4 different devices. *Cornea* 2016;35:838–42. [\[CrossRef\]](#)

5. Kohnen T, Thomala M, Cichocki M, Strenger A. Internal anterior chamber diameter using optical coherence tomography compared with white-to-white distances using automated measurements. *J Cataract Refract Surg* 2006;32:1809–13. [\[CrossRef\]](#)
6. Ambrósio R, Belin MW, Conrad-Hengerer I, et al. Pentacam user guide. System for measuring and analysing the front part of the eye. 3rd ed. Wetzlar: Interpretation Guide Pentacam; Pentacam HR; Pentacam AXL.
7. Salouti R. Agreement of corneal diameter measurements obtained by a swept-source biometer and a Scheimpflug-based topographer. *Cornea* 2017;36:1–4. [\[CrossRef\]](#)
8. Sayed KM. Interchangeability between Pentacam and IOLMaster in phakic intraocular lens calculation. *Eur J Ophthalmol* 2015;25:202–7. [\[CrossRef\]](#)
9. Domínguez-Vicent A, Pérez-Vives C, Ferrer-Blasco T, García-Lázaro S, Montés-Micó R. Device interchangeability on anterior chamber depth and white-to-white measurements: a thorough literature review. *Int J Ophthalmol* 2016;9:1057–65.
10. Salouti R, Nowroozzadeh MH, Zamani M, Ghoreyshi M, Salouti R. Comparison of horizontal corneal diameter measurements using Galilei, EyeSys and Orbscan II systems. *Clin Exp Optom* 2009;92:429–33. [\[CrossRef\]](#)
11. Bjelos RM, Busic M, Cima I, Kuzmanovic EB, Bosnar D, Miletic D. Intraobserver and interobserver repeatability of ocular components measurement in cataract eyes using a new optical low coherence reflectometer. *Graefes Arch Clin Exp Ophthalmol* 2011;249:83–7. [\[CrossRef\]](#)

Comparison of Two Techniques in Phacoemulsification: Hydroimplantation and Viscoimplantation

Yusuf Ayaz, Hatice Deniz Ilhan, Cisil Erkan Pota, Mustafa Unal, Yusuf Samet Atlihan

Department of Ophthalmology, Akdeniz University, Antalya, Türkiye

Abstract

Objectives: The aim of this study was to compare hydroimplantation and viscoimplantation techniques in phacoemulsification surgery by analyzing corneal tomography parameters and changes in intraocular pressure (IOP).

Methods: This retrospective study included 74 eyes of 74 consecutive patients who underwent phacoemulsification surgery and implantation of a foldable intraocular lens (IOL). Each eye was assigned to either the viscoelastic material (VEM) group (VEM(+); (n=39) or the VEM (-) group (n=35). Accordingly, IOL implantation was performed with VEM (1.4% sodium hyaluronate; Protectalon, VSY, Turkey) in the VEM(+) group, whereas hydroimplantation without VEM was used in the VEM (-) group. Post-operative examinations were performed on post-operative days 1, 3, and 7, and at 1 month.

Results: There was no statistically significant difference in IOP between the VEM(+) and VEM(-) groups before surgery or at any post-operative time point except at 24 h. At 24 h postoperatively, the VEM(+) group had a significantly higher IOP compared to the VEM(-) group ($p=0.010$). In addition, the central corneal thickness at 1 month was significantly higher in the VEM(+) group than in the VEM(-) group ($p=0.027$). No statistically significant differences were found between the groups in best corrected visual acuity, anterior chamber depth, and axial length. There was no posterior capsule rupture or zonular dialysis in either group.

Conclusion: Phacoemulsification using the hydroimplantation technique appears to be a safe and feasible approach that may help mitigate early post-operative IOP elevation; however, assessing corneal endothelial cell function by specular microscopy would be important for a more comprehensive safety comparison between techniques.

Keywords: Hydroimplantation, Intraocular pressure, Phacoemulsification, Viscoimplantation

Introduction

Cataract surgery is the most common operative procedure performed by ophthalmologists. This operation is predominantly performed using the modern technique of phacoemulsification combined with intraocular lens (IOL) implantation (1). During the IOL implantation stage of phacoemulsification, viscoelastic material (VEM) is routinely employed. However, several reports have indicated that VEM remain-

ing in the anterior chamber (AC) cannot be completely removed using the irrigation-aspiration system following the application of VEM during IOL implantation (2,3).

Recent studies have described a hydroimplantation technique for IOL implantation that eliminates the need for VEM (4,5). In this approach, the irrigation cannula is introduced into the AC through the lateral port, while the injector is maneuvered through the main incision (6,7). As no VEM is used during the procedure, there is no risk of residual sub-

How to cite this article: Ayaz Y, Ilhan HD, Erkan Pota C, Atlihan YS, Unal M. Comparison of Two Techniques in Phacoemulsification: Hydroimplantation and Viscoimplantation. Beyoglu Eye J 2025; 10(4): 211-217.

Address for correspondence: Cisil Erkan Pota, MD. Department of Ophthalmology, Akdeniz University, Antalya, Türkiye
Phone: +90 534 550 00 54 **E-mail:** cisilerkann@gmail.com

Submitted Date: April 28, 2025 **Revised Date:** October 31, 2025 **Accepted Date:** December 15, 2025 **Available Online Date:** January 19, 2026

Beyoglu Eye Training and Research Hospital - Available online at www.beyoglueye.com

OPEN ACCESS This is an open access article under the CC BY-NC license (<http://creativecommons.org/licenses/by-nc/4.0/>).

stance remaining in the capsular bag. Furthermore, this technique is regarded as both simple and safe, particularly as the irrigation cannula provides additional ocular stability when introduced through the lateral port.

Previous studies have compared pre- and post-operative central corneal thickness (CCT) and intraocular pressure (IOP) values between the viscoimplantation and hydroimplantation groups; however, differences in AC depth (ACD) on days 1, 3 and 7, as well as at 1 month, were not compared between the two groups (8,9).

In this study, we investigated the effects of IOL implantation performed with or without VEM on post-operative measurements, including IOP, corneal curvature (K1: flat meridian, K2: steep meridian), ACD, and CCT.

Methods

Study Design and Ethics

This retrospective study included 74 eyes of 74 patients who underwent standard phacoemulsification with foldable IOL implantation at the Department of Ophthalmology, Akdeniz University, Antalya, Türkiye, between November 2016 and January 2017. The study was conducted in accordance with the Declaration of Helsinki and approved by the institutional ethics committee of Akdeniz University (KAEK 20 No:77). Written informed consent was obtained from all participants before surgery.

Participants

Eligible participants were patients with nuclear age-related cataract up to Grade 2 according to the Lens Opacity Classification System III, without additional ocular diseases (10). Exclusion criteria included a history of ocular trauma or surgery, lens subluxation, zonular weakness, complicated cataract, degenerative myopia, uveitis, corneal endothelial pathologies such as Fuchs' endothelial dystrophy, and clinically evident pseudoexfoliation syndrome.

Pre-operative Evaluation

All patients underwent a comprehensive ophthalmological examination, including assessment of best corrected visual acuity (BCVA) with a Snellen chart (converted to LogMAR), assessment of the anterior and posterior segment of the eye, and measurement of IOP with non-contact tonometry (CT-80, Topcon, Japan). Corneal curvature (K1, K2), ACD and CCT were measured with a corneal topography system (Pentacam HR, Oculus, Germany). The axial length (AL) and the corneal curvature for the calculation of the IOL power were determined with the IOLMaster 500 (Carl Zeiss Meditec, Germany).

Randomization and Surgical Technique

The patients were randomly divided into two groups: The viscoimplantation group (VEM+) and the hydroimplantation

group (VEM-). Group allocation was determined using a computer-generated table of random numbers to ensure unbiased distribution. All surgical procedures were performed by two experienced surgeons (M.U. and H.D.I.) under topical anaesthesia with proparacaine hydrochloride (Alcon, Switzerland), utilizing the same phacoemulsification platform (Infinity Vision System, Alcon, USA). To minimize variability between surgeons, each surgeon performed the same number of procedures in both groups.

Standard main and secondary corneal incisions were performed using 20 G MVR knives, and the AC was filled with dispersive (Viscoat, Alcon, USA) and cohesive (Protectalon, VSY, Turkey) VEM. A continuous curvilinear capsulorhexis approximately 0.5 mm smaller than the IOL optic diameter was performed, followed by hydrodissection and hydrodelineation. The nucleus was removed using the stop-and-chop technique, and the residual cortical material was aspirated with bimanual irrigation/aspiration.

In the VEM(+) group, the capsular bag was filled with viscoelastic before IOL implantation, whereas in the VEM(-) group, IOL implantation was performed under continuous irrigation without the use of VEM. When VEM was employed, it was thoroughly aspirated at the end of the procedure. The wounds were sealed by stromal hydration, and 0.1 cc of intracameral moxifloxacin was administered; no sutures were required. Postoperatively, all patients received topical antibiotic drops 4 times daily for 1 week and topical corticosteroids 4 times daily for 1 week, which were subsequently tapered over a 4 weeks period.

Post-operative Follow-up and Measurements

Post-operative evaluations included IOP, ACD, AL, CCT, corneal curvature (K1, K2), refraction, and BCVA (LogMAR). Measurements were obtained on post-operative days 1, 3, and 7, and at 1 month. The ACD, CCT, and corneal curvature were measured using the Scheimpflug imaging system (Pentacam HR, Oculus, Germany). These follow-up intervals were specifically selected to reflect our routine post-operative schedule for patients undergoing phacoemulsification and are optimal for detecting early alterations in the anterior segment. Similar intervals have been reported in previous studies, e.g. by Cho (11), Sallam and Zaky and Zhu et al., (12) who investigated early post-operative AC dynamics, IOP fluctuations and endothelial outcomes after cataract surgery.

Statistical Analysis

Data were analyzed using the Statistical Package for the Social Sciences (SPSS) version 22.0 (SPSS Inc., Chicago, IL, USA) and Statistical Analysis System (SAS) version 9.4 (SAS Institute, Cary, NC, USA). Normality was assessed with the Shapiro-Wilk test. Continuous variables are summarized as mean \pm standard deviation when approximately normal and

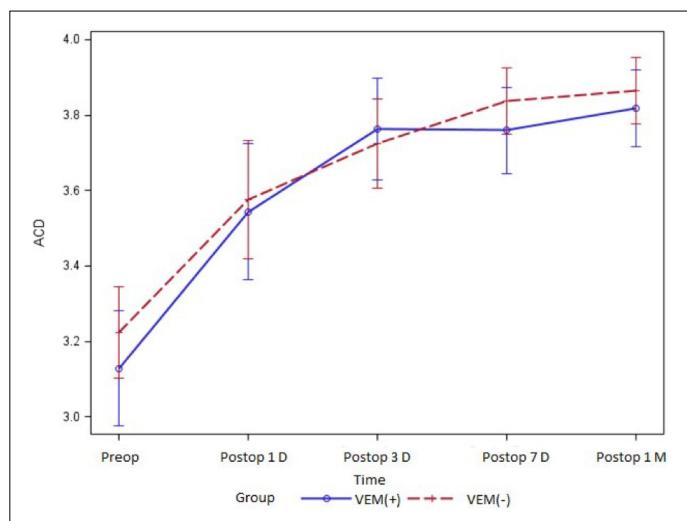
as median when non-normal. Between-group comparisons used the independent-samples *t* test or the Mann–Whitney *U* test, respectively. For repeated measurements over time, repeated-measures Analysis of Variance was applied when assumptions were met (sphericity assessed by Mauchly's test with Greenhouse–Geisser correction when violated); otherwise, the Friedman test (with Wilcoxon signed-rank tests for post hoc comparisons) was used. Categorical variables were compared using Fisher's exact test. Effect sizes were reported as Hedges' *g* (or Cohen's *d*) for parametric contrasts and as the Hodges–Lehmann median difference with 95% confidence intervals for non-parametric contrasts. The primary endpoint was post-operative day-1 IOP. In addition, the proportion of eyes with IOP >30 mmHg on day 1 was analyzed as a clinically relevant binary outcome (risk ratio with 95% confidence interval; Fisher's exact *p* value). No formal multiplicity correction was applied to secondary or exploratory analyses; the primary endpoint was prespecified a priori. Two-sided *p*<0.05 was considered statistically significant.

Results

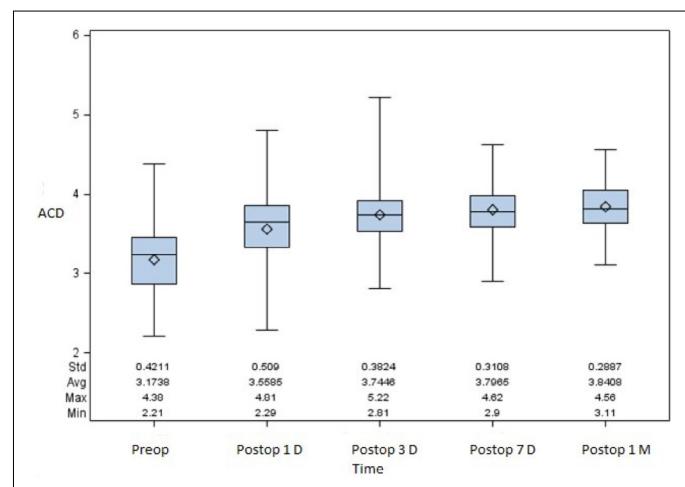
A total of 74 eyes of 74 patients were included in the study, of which 39 patients were in the viscoimplantation group (VEM+) and 35 in the hydroimplantation group (VEM-). The demographic characteristics and cataract grading of the groups are summarized in Table 1. There were no statistically significant differences between the groups in terms of age, gender distribution or cataract grade. No intraoperative complications were observed in either group.

Table 2 shows BCVA, IOP, CCT, corneal curvature values (K1, K2), ACD, AL, IOL power, and *P*-values of patients before and after surgery (Figs. 1–3). There was no difference between the groups in terms of BCVA before and after surgery (*p*=0.241 and *p*=0.426, respectively). Distributional checks indicated that day-1 IOP in the VEM(+) group deviated from normality; therefore, non-parametric testing was used for this endpoint. There were no between-group differences in IOP at baseline or at post-operative day 3, day 7, or month 1 (*p*=0.097, 0.147, 0.106, and 0.781, respectively).

Table 1. Comparison of demographic and clinical characteristics between the VEM(+) and VEM(–) groups


	VEM				All	χ^2	<i>P</i>			
	VEM(+)		VEM(–)							
	n	% (mean)	n	% (mean)						
Age (years)	39	52.70 (66.38)	35	47.30 (68.31)	75	(67.54)	0.231 0.821			
Eye							0.043 0.835			
Right eye	18	46.15	17	48.57	35	47.30				
Left eye	21	53.85	18	51.43	39	52.70				
Sex							0.711 0.399			
Female	13	33.33	15	42.68	28	37.84				
Male	26	66.67	20	57.14	46	62.16				
PAMC							6.728 0.081			
0	29	74.36	33	94.29	62	83.78				
1	4	10.26	2	5.71	6	8.11				
2	4	10.26			4	5.41				
3	2	5.13			2	2.70				
LOS (NO2)					5.572	0.233				
2	5	12.82	4	11.43	9	12.16				
3	6	15.38	1	2.86	7	9.46				
4	16	41.03	13	37.14	29	39.19				
5	8	20.51	14	40.00	22	29.73				
6	4	10.26	3	8.57	7	9.46				

Categorical variables were compared using the Chi-square (χ^2) test. Data are presented as number (n) and percentage (%), and *P*<0.05 were considered statistically significant. PAMC: Post-operation antiglaucoma medication count, LOS: Lens opacification system, VEM: Viscoelastic material, VEM(+): Group of viscoimplantation, VEM(–): Group of hydroimplantation.


Table 2. Comparison of ocular parameters, including BCVA, IOP, corneal, and anterior chamber measurements, between the VEM(+) and VEM(−) groups

	VEM(+) group (n=39)	VEM(−) group (n=35)	P
VA (pre-operative, LogMAR)	0.90±0.54	0.75±0.49	0.241
VA (post-operative 1M, LogMAR)	0.08±0.13	0.12±0.27	0.426
IOP (pre-operative, mmHg)	18.13±3.13 (10–24)	19.26±2.59 (14–24)	0.097
IOP (post-operative 1d, mmHg)	22.05±5.92 (13–33)	18.74±4.68 (13–35)	0.003
IOP (post-operative 3d, mmHg)	16.87±2.52 (9–20)	16.06±2.24 (11–20)	0.147
IOP (post-operative 7d, mmHg)	17.10±2.14 (13–21)	16.26±2.31 (11–20)	0.106
IOP (post-operative 1M, mmHg)	16.82±2.44 (12–23)	16.97±2.19 (12–20)	0.781
IOL Power (D)	20.95±3.71	21.09±2.14	0.848
AL (pre-operative, mm)	23.57±1.70	23.42±0.89	0.643
K1 (pre-operative, D)	43.39±1.57	43.31±1.47	0.826
K1 (post-operative 1M, D)	43.10±1.69	43.14±1.64	0.942
K2 (pre-operative, D)	44.18±1.61	44.20±1.62	0.969
K2 (post-operative 1M, D)	44.14±1.59	44.07±1.57	0.853
ACD (pre-operative, mm)	3.13±0.47	3.22±0.36	0.334
ACD (post-operative 1d, mm)	3.54±0.56	3.58±0.46	0.788
ACD (post-operative 3d, mm)	3.76±0.42	3.72±0.35	0.677
ACD (post-operative 7d, mm)	3.76±0.35	3.84±0.25	0.293
ACD (postop 1M, mmHg)	3.82±0.32	3.87±0.26	0.480
CCT (pre-operative, μ m)	542.26±35.30	534.29±41.84	0.377
CCT (post-operative 1M, μ m)	549.49±30.33	531.20±39.34	0.027

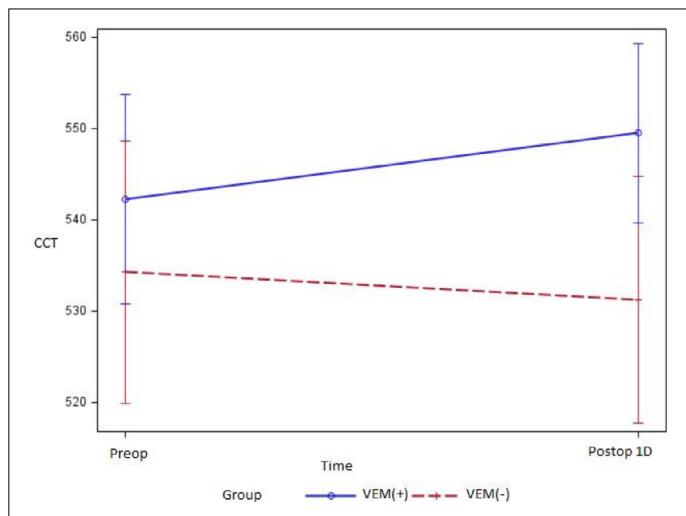
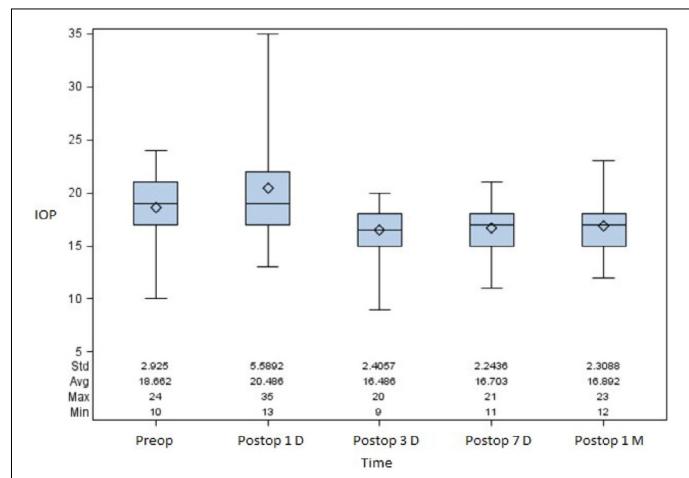

Statistically significant P-values are shown in bold. Values are presented as mean±SD (min–max). VEM: Viscoelastic material, VEM(+): Group of viscoimplantation, VEM(−): Group of hydroimplantation, VA: Visual acuity, logMAR: Logarithm of the minimum angle of resolution, pre-operative: Pre-operative, IOP: Intraocular pressure, mmHg: Millimeters of mercury, post-operative 1d: Post-operative day 1, post-operative 3d: Post-operative day 3, post-operative 7d: Post-operative day 7, post-operative 1M: Post-operative month 1, IOL: Intraocular lens, D: Diopter, AL: Axial length, mm: Millimeter, K1: Flat keratometry, K2: Steep keratometry, ACD: Anterior chamber depth, CCT: Central corneal thickness, μ m: Micrometer, SD: Standard deviation, min: Minimum, max: Maximum.

Figure 1. Anterior chamber depth-time changes.

Figure 2. Anterior chamber depth-time changes.


Figure 3. Central corneal thickness-time changes.

(Fig. 4). On day 1, IOP was higher in the VEM(+) than in the VEM(−) group (Mann–Whitney U, two-sided $p=0.003$). The proportion of eyes with IOP >30 mmHg on day 1 was 13/39 (33.3%) in VEM(+) versus 2/35 (5.7%) in VEM(−), risk ratio 5.83 (95% CI 1.41–24.06); Fisher's exact $p=0.003$. All spikes were managed with systemic acetazolamide. There was no significant difference in pre-operative CCT between the two groups ($p=0.377$); however, CCT was significantly higher in the VEM(+) group than in the VEM(−) group 1 month post-operatively ($p=0.027$).

Discussion

VEM are used in cataract surgery to preserve the AC, protect intraocular tissues from ultrasound energy, maintain intraoperative ocular tone, and facilitate IOL implantation (1,2). An optimal VEM should be readily removable from the AC at the end of surgery, as any residual material may elevate IOP, induce intraocular inflammation, and potentially damage the corneal endothelium (3). Although the VEM is removed during the irrigation/aspiration phase after IOL implantation, it may remain slightly behind the IOL. Complications such as posterior capsule rupture may also occur while the VEM remains behind the IOL (13). In addition, the VEM between the IOL and the posterior capsule may lead to capsular block syndrome after surgery, and myopic shift may develop due to the displacement of the IOL in the capsular bag (14).

In 2010, Tak et al. (4) described the hydroimplantation method for IOL implantation in response to the potential adverse effects of viscoelastic agents. Hydroimplantation offers several advantages, including reduced surgical time and facilitated IOL implantation by stabilizing the eyeball with the irrigation cannula. Moreover, the improved adhesion between the IOL and the posterior

Figure 4. Intraocular pressure-time changes.

capsule may help prevent posterior capsule opacification by limiting the migration of equatorial epithelial cells towards the central capsule. Although several studies have reported on this technique, no study has compared post-operative ACD and corneal curvature values with the Pentacam system.

In our study, the patients were divided into two groups: VEM(+) and VEM(−), and the post-operative values of ACD, IOP, CCT and corneal curvature (K1, K2) were compared. The post-operative IOP on day 1 was significantly higher in the VEM(+) group than in the VEM(−) group. Elevated IOP in the post-operative period is clinically important, particularly in individuals who are vulnerable to optic nerve injury (15,16). In our study, there were no cases with glaucoma or pseudoexfoliation. The most common cause of an early increase in IOP after cataract surgery is blockage of viscoelastic-induced trabecular flow in the AC (17–20). When comparing the VEM(+) and VEM(−) groups, IOP was significantly higher in the VEM(+) group only on the 1st post-operative day. Although the difference was not statistically significant, patients in the VEM(+) group were more likely to require post-operative antiglaucoma medication (Table 1). Overall, the higher incidence of IOP spikes on post-operative day 1 in the VEM(+) group likely reflects a multifactorial process rather than a single mechanism. A plausible contributor is residual VEM despite careful aspiration. Small amounts may remain in the AC angle and transiently impede aqueous humor outflow. This mechanism is well documented, particularly with dispersive ophthalmic viscosurgical devices such as Viscoat and with soft shell techniques (21). In addition, the VEM(+) group had a slightly longer mean AL. Although this difference was not statistically significant, prior studies suggest that greater AL may predispose eyes to transient IOP elevation (22). Post-operative inflammation may also contribute. We did not measure inflammatory markers in

this study, which we acknowledge as a limitation. Finally, interindividual variation in steroid responsiveness could have played a role (23). In addition, it is possible that some patients in the VEM(+) group did not strictly adhere to their post-operative medication regimen, which may have contributed to higher IOP levels; the lack of objective verification of patient compliance is another limitation of our study. A less likely explanation is that this finding was incidental in this group or that some patients squeezed their eyes during tonometry, resulting in artificially elevated measurements. Given the relatively small cohort size, such confounding may occur, and larger prospective studies with longer follow-up are needed to confirm these findings. No difference in IOP measurements was observed at post-operative day 3 follow-up.

While previous studies generally reported no significant difference in pre- and post-operative CCT between the groups, we observed a significantly thicker CCT in the VEM(+) group at 1 month. This may be explained by several mechanisms. First, the endothelial cells in the VEM(+) group may have been better preserved during surgery due to viscoelastic protection, resulting in slightly prolonged hydration of the corneal stroma and delayed resolution of the seroma. Second, although the clinical corneal edema was not overt, the minimal inflammatory response may have led to an increase in CCT in the millimeter range. Third, the transiently higher IOP on the 1st post-operative day in the VEM(+) group may have temporarily impaired endothelial pump function, thereby delaying the normalization of stromal fluid content and CCT. Studies such as Bamdad et al. (24) and Tang et al. (25) have documented similar patterns showing an early post-operative CCT increase that gradually regresses to baseline, especially when endothelial stress is present (26). Finally, the small sample size of our study could result in a few outlier values disproportionately affecting the mean, emphasizing the need for larger cohorts to validate these observations.

Although ACD can also be assessed with conventional A-mode ultrasound, the contact of this method with the corneal surface carries risks such as corneal abrasion and infection (27). CCT can also be measured with ultrasound pachymetry. Several studies comparing Pentacam and ultrasound pachymetry have shown that although the measurements are comparable, Pentacam tends to yield slightly thinner CCT thickness values (28). In view of these findings and to minimize the risks associated with contact-based methods, we used CCT measurements with Pentacam in our study. It is important to note that CCT is influenced by the degree of hydration of the cornea, which in turn depends on the proper function of the endothelial pump and barrier mechanisms.

The limitations of our study include its relatively short follow-up period, the small sample size, and the absence of post-operative endothelial cell count (ECC) measurements, as no specular microscopy was performed. This limitation restricts our ability to comprehensively evaluate corneal endothelial cell function and the long-term safety of the hydroimplantation technique for the corneal endothelium. Furthermore, the post-operative inflammatory response was neither assessed nor compared between groups, which may have contributed to IOP fluctuations. Patient adherence to post-operative medication was also not objectively verified. In addition, it is possible that certain patients predisposed to post-operative IOP spikes, such as steroid responders or patients with undiagnosed normotensive glaucoma, were inadvertently included in the study, which may have influenced the observed results. These factors represent additional limitations that should be taken into consideration in larger prospective studies in the future.

Conclusion

To summarize, hydroimplantation appears to be a safe and effective alternative to viscoelastic-supported IOL implantation in routine phacoemulsification surgery, particularly in appropriately selected patient groups. When performed by experienced surgeons, this technique may help minimize early post-operative IOP peaks while maintaining surgical safety. Moreover, hydroimplantation offers potential advantages in terms of surgical efficiency and cost-effectiveness. Nevertheless, larger prospective studies with extended follow-up and ECC evaluations are needed to confirm these findings and to further elucidate the long-term effects of hydroimplantation on corneal health and visual outcomes.

Disclosures

Ethics Committee Approval: This study was approved by the Akdeniz University Ethics Committee (Date: 08.02.2017 Number: KAEK 20 No:77).

Informed Consent: Written informed consent was obtained from all patients.

Conflict of Interest: None declared.

Funding: The author declared that this study has received no financial support.

Use of AI for Writing Assistance: None declared.

Author Contributions: Concept – Y.A., H.D.I., M.U., C.E.P.; Design – Y.A., H.D.I., M.U., C.E.P.; Supervision – Y.A., H.D.I., M.U., C.E.P.; Resource – Y.A., H.D.I., M.U., C.E.P.; Materials – Y.A., H.D.I., M.U., C.E.P.; Data Collection and/or Processing – Y.A., H.D.I., M.U., C.E.P.; Analysis and/or Interpretation – Y.A., H.D.I., M.U., C.E.P.; Literature Search – Y.A., C.E.P.; Writing – Y.A., C.E.P., H.D.I.; Critical Reviews – Y.A., H.D.I., M.U., C.E.P.

Peer-review: Externally peer-reviewed.

References

- Oshika T, Bissen-Miyajima H, Fujita Y, Hayashi K, Mano T, Miyata K, Sugita T, Taira Y. Prospective randomized comparison of DisCoVisc and Healon5 in phacoemulsification and intraocular lens implantation. *Eye* 2010;24:1376–81. [\[CrossRef\]](#)
- Hengerer FH, Dick HB, Kohnen T, Conrad-Hengerer I. Assessment of intraoperative complications in intumescent cataract surgery using 2 ophthalmic viscosurgical devices and trypan blue staining. *J Cataract Refract Surg* 2015;41:714–8. [\[CrossRef\]](#)
- Beiko GH. Endothelial cell loss after cataract phacoemulsification with Healon5 vs. I-Visc Phaco. *Can J Ophthalmol* 2003;38:52–6. [\[CrossRef\]](#)
- Tak H. Hydroimplantation: foldable intraocular lens implantation without an ophthalmic viscosurgical device. *J Cataract Refract Surg* 2010;36:377–9. [\[CrossRef\]](#)
- Özyol E, Özyol P. Hydro-visco-implantation technique for wound-assisted foldable intraocular lens implantation during microincision cataract surgery. *J Cataract Refract Surg* 2008;34:1748–53.
- Studeny P, Hyndrak M, Kacerovsky M, Mojzis P, Sivekova D, Kuchynka P. Safety of hydroimplantation: a foldable intraocular lens implantation without the use of an ophthalmic viscosurgical device. *Eur J Ophthalmol* 2014;24:850–6. [\[CrossRef\]](#)
- Lee HY, Choy YJ, Park JS. Comparison of OVD and BSS for maintaining the anterior chamber during IOL implantation. *Korean J Ophthalmol* 2011;25:15–21. [\[CrossRef\]](#)
- Chen Y, Cao Q, Xue C, Huang Z. Comparison of two techniques for toric intraocular lens implantation: hydroimplantation versus ophthalmic viscosurgical devices. *BMC Ophthalmol* 2018;18:109. [\[CrossRef\]](#)
- Oğurel T, Oğurel R, Onaran Z, Örnek K. Safety of hydroimplantation in cataract surgery in patients with pseudoexfoliation syndrome. *Int J Ophthalmol* 2017;10:723–7. [\[CrossRef\]](#)
- Chylack LT Jr, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, McCarthy D, Wu SY. The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. *Arch Ophthalmol* 1993;111:831–6. [\[CrossRef\]](#)
- Cho YK. Early intraocular pressure and anterior chamber depth changes after phacoemulsification and intraocular lens implantation in nonglaucomatous eyes. Comparison of groups stratified by axial length. *J Cataract Refract Surg* 2008;34:1104–9. [\[CrossRef\]](#)
- Sallam MA, Zaky KA. Effect of anterior chamber depth on corneal endothelium following phacoemulsification among patients with different axial lengths. *Int Ophthalmol* 2025;45:45. [\[CrossRef\]](#)
- Sim BVV, Amjadi S, Singh R, Bhardwaj G, Dubey R, Francis IC. Assessment of adequate removal of ophthalmic viscoelastic device with irrigation/aspiration by quantifying intraocular lens judders. *Clin Exp Ophthalmol* 2013;41:450–4. [\[CrossRef\]](#)
- Henry JC, Olander K. Comparison of the effect of four viscoelastic agents on early postoperative intraocular pressure. *J Cataract Refract Surg* 1996;22:960–6. [\[CrossRef\]](#)
- Kim HK, Shin JP. Capsular block syndrome after cataract surgery: clinical analysis and classification. *J Cataract Refract Surg* 2008;34:357–63. [\[CrossRef\]](#)
- Ornek K, Büyüktortop N, Ornek N, Oğurel R, Erbahçeci IE, Onaran Z. Effect of 1% brinzolamide and 0.5% timolol fixed combination on intraocular pressure after cataract surgery with phacoemulsification. *Int J Ophthalmol* 2013;6:851–4.
- Shrivastava A, Singh K. The effect of cataract extraction on intraocular pressure. *Curr Opin Ophthalmol* 2010;21:118–22. [\[CrossRef\]](#)
- Bissen-Miyajima H. Ophthalmic viscosurgical devices. *Curr Opin Ophthalmol* 2008;19:50–4. [\[CrossRef\]](#)
- Neumayer T, Prinz A, Findl O. Effect of a new cohesive ophthalmic viscosurgical device on corneal protection and intraocular pressure in small-incision cataract surgery. *J Cataract Refract Surg* 2008;34:1362–6. [\[CrossRef\]](#)
- Kessel L, Andresen J, Tendal B, Erngaard D, Flesner P, Hjortdal J. Toric intraocular lenses in the correction of astigmatism during cataract surgery: a systematic review and meta-analysis. *Ophthalmology* 2016;123:275–86. [\[CrossRef\]](#)
- Malvankar-Mehta MS, Fu A, Subramanian Y, Hutnik C. Impact of ophthalmic viscosurgical devices in cataract surgery. *J Ophthalmol* 2020;2020:7801093. [\[CrossRef\]](#)
- Kim JY, Jo MW, Brauner SC, Ferrufino-Ponce Z, Ali R, Creimers SL, Henderson BA. Increased intraocular pressure on the first postoperative day following resident-performed cataract surgery. *Eye* 2011;25:929–36. [\[CrossRef\]](#)
- Gim N, Jiang Y, Bagdasarova Y, Ferguson A, Blazes M, Lee AY, Chen A, Lee CS, Taravati P, IRIS Registry Analytic Center Consortium. Elevated intraocular pressure immediately after cataract surgery and future risk of primary open-angle glaucoma in the IRIS registry. *Ophthalmol Sci* 2025;5:100851. [\[CrossRef\]](#)
- Bamdad S, Bolkheir A, Sedaghat MR, Motamed M. Changes in corneal thickness and corneal endothelial cell density after phacoemulsification cataract surgery: a double-blind randomized trial. *Electron Physician* 2018;10:6616–23. [\[CrossRef\]](#)
- Tang Y, Chen X, Zhang X, Tang Q, Liu S, Yao K. Clinical evaluation of corneal changes after phacoemulsification in diabetic and non-diabetic cataract patients: a systematic review and meta-analysis. *Sci Rep* 2017;7:14128. [\[CrossRef\]](#)
- Koranyi G, Lydahl E, Norrby S, Taube M. Anterior chamber depth measurement: a-scan versus optical methods. *J Cataract Refract Surg* 2002;28:243–7. [\[CrossRef\]](#)
- O'Donnell C, Maldonado-Codina C. Agreement and repeatability of central thickness measurement in normal corneas using ultrasound pachymetry and the OCULUS Pentacam. *Cornea* 2005;24:920–4. [\[CrossRef\]](#)
- Amano S, Honda N, Amano Y, Yamagami S, Miyai T, Samejima T, Ogata M, Miyata K. Comparison of central corneal thickness measurements by rotating Scheimpflug camera, ultrasonic pachymetry, and scanning-slit corneal topography. *Ophthalmology* 2006;113:937–41. [\[CrossRef\]](#)

Long-term Outcomes of Trabeculectomy Versus Ahmed Glaucoma Valve Implantation in Vitrectomized Eyes

Gulsah Gumus Akgun,¹ Nese Alagoz,¹ Ihsan Cakir,¹ Cigdem Altan,¹ Ali Safa Balci,² Yavuz Selim Dogan,³ Tekin Yasar,¹ Gizem Taskin¹

¹Department of Ophthalmology, University of Health Sciences, Beyoglu Eye Training and Research Hospital, Istanbul, Türkiye

²Department of Ophthalmology, Sancaktepe Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Türkiye

³Department of Ophthalmology, Kırklareli Training and Research Hospital, Kırklareli, Türkiye

Abstract

Objectives: This study compares the long-term outcomes and success rates of trabeculectomy and Ahmed glaucoma valve (AGV) implantation in vitrectomized eyes.

Methods: This study included 58 eyes of 58 patients who had undergone pars plana vitrectomy and subsequently received either trabeculectomy (25 eyes) or AGV implantation (33 eyes) at our hospital between March 01, 2017 and April 01, 2023 and had at least 1-year follow-up. Complete success was defined as maintaining an intraocular pressure (IOP) between 5 and 21 mmHg without medication, whereas overall success was defined as achieving the same IOP range with or without medication. Failure was defined as an IOP exceeding 21 mmHg or falling below 5 mmHg, visual deterioration to light perception due to glaucoma progression or complications from glaucoma surgery, or the need for further glaucoma surgery.

Results: The complete success was higher in the trabeculectomy group. Whereas both groups' overall success rates were similar at the last follow-up ($p=0.04$). Both groups demonstrated a comparable failure rate ($p=0.44$). The probability of success in the trabeculectomy group was 92.0% at 12 months, 88.0% at 24 months, and 84.0% at 36 months, whereas in the AGV group, it was 87.8% at 12 months, 81.8% at 24 months, and 75.7% at 36 months. There was no difference in terms of post-operative complication rate in both groups. ($p=0.36$).

Conclusion: Both AGV implantation and trabeculectomy yield comparable outcomes in vitrectomized eyes. However, trabeculectomy reduced the requirement for antiglaucoma medications postoperatively. Consequently, trabeculectomy may be a viable option in carefully selected vitrectomized eyes.

Keywords: Ahmed glaucoma valve, trabeculectomy, vitrectomized eyes

Introduction

Vitrectomy is a commonly performed surgical procedure for the treatment of numerous vitreoretinal diseases. A variety of factors can elevate intraocular pressure (IOP) after vitrectomy, including pupillary block, inflammatory response, infiltration of the trabecular meshwork by silicone oil (SO) par-

ticles, and angle closure caused by Synechia (1,2). Secondary glaucoma is a common complication in eyes that have undergone vitrectomy, with an increase in IOP observed in 19–28% of cases following pars plana vitrectomy (PPV) (3,4). In eyes where SO is used as an endotamponade, the risk of glaucoma ranges from 2.2% to 56%, with risk increasing with the prolonged presence of SO in the eye (5).

How to cite this article: Gümüş Akgün G, Alagoz N, Cakır I, Altan C, Balci AS, Dogan YS, et al. Long-term Outcomes of Trabeculectomy Versus Ahmed Glaucoma Valve Implantation in Vitrectomized Eyes. Beyoglu Eye J 2025; 10(4): 218-225.

Address for correspondence: Gulsah Gumus Akgun, MD. Department of Ophthalmology, University of Health Sciences, Beyoglu Eye Training and Research Hospital, Istanbul, Türkiye
Phone: +90 212 251 59 00 **E-mail:** gumus_118_@hotmail.com

Submitted Date: June 11, 2025 **Revised Date:** July 11, 2025 **Accepted Date:** September 19, 2020 **Available Online Date:** January 19, 2026
Beyoglu Eye Training and Research Hospital - Available online at www.beyoglueye.com

OPEN ACCESS This is an open access article under the CC BY-NC license (<http://creativecommons.org/licenses/by-nc/4.0/>).

Treatment options range from the use of topical antiglaucoma medications to surgery or cyclodestructive procedures. When IOP elevation persists, glaucoma surgery is often necessary. Trabeculectomy with mitomycin C and glaucoma drainage device (GDD) implantation, such as the Ahmed glaucoma valve (AGV), are two widely used surgical options for managing glaucoma that is unresponsive to medical treatment. However, glaucoma surgery has a less favorable prognosis and a higher likelihood of complications in vitrectomized eyes (6). Conjunctival scarring from previous surgery is a significant cause of trabeculectomy failure, and the success rate after vitrectomy may be reduced (7). Therefore, GDDs are generally preferred for refractory glaucoma in vitrectomized eyes (8-10). However, challenges of GDD implantation include prolonged surgical duration, technical difficulties due to conjunctival scarring, and the cost of the devices, particularly in low- and middle-income countries.

Previous studies have reported on the success rates of various glaucoma surgeries in vitrectomized eyes (11-13). This study compares the long-term outcomes and success rates of trabeculectomy and AGV implantation in eyes that have undergone vitrectomy. This is the first study to compare AGV implantation and trabeculectomy in vitrectomized eyes.

Methods

This retrospective study included previously vitrectomized eyes that underwent either trabeculectomy or AGV implantation at our hospital between March 01, 2017, and April 01, 2023. Written informed consent for the use of patient data was obtained from all participants in accordance with the Declaration of Helsinki, and the study received approval from the local ethics committee (Approval number: 3/37, date: March 14, 2024).

Patients with a history of PPV before receiving either trabeculectomy or AGV implantation who had at least 1-year follow-up were included in the study. Patients were splitted into two groups according to which intervention they received. Cases with missing data or follow-up of <12 months, and those under the age of 18, were excluded from the study. Data collected for each patient included gender, age, indication for PPV, type of tamponade used during PPV, lens status, pre-existing glaucoma before PPV, type of glaucoma surgery performed, pre-operative best corrected visual acuity (BCVA), pre-operative IOP, pre-operative antiglaucoma medication use, pre-operative cup-to-disk ratio, pre-operative retinal nerve fiber layer thickness, follow-up time, number of cyclodestructive laser treatments after glaucoma surgery, post-operative complications, and the number of bleb needling and cyst excisions. BCVA was measured with a Snellen chart and was converted into logMAR for statisti-

cal analysis. IOP was measured using a Goldman applanation tonometer (AT 900, Haag Streit, Bern, Switzerland). BCVA, IOP, antiglaucoma medication use, and follow-up data were recorded at 1 week, 1 month, 3 months, 6 months, 1 year, 2 years, 3 years, and at the final follow-up.

Complete success was defined as the maintenance of IOP between 5 and 21 mmHg with a minimum 20% reduction from the baseline IOP, without requiring any glaucoma medication or surgical intervention for high IOP other than bleb needling and AGV cyst excision. Qualified success was defined as IOP maintained between 5 and 21 mmHg with the additional use of antiglaucoma medications. Overall success was defined as the sum of complete and qualified successes. Surgical failure was defined as an IOP >21 mmHg or <5 mmHg, a decline in vision to light perception attributable to glaucoma progression or surgical complications, or the need for additional glaucoma interventions, including trabeculectomy, AGV implantation, or cyclodestructive procedures (14).

The primary outcome measure of the study was the success rate in both groups, while secondary outcomes included IOP, BCVA, the number of antiglaucoma medications, complications, and the need for further glaucoma surgery.

Surgical Technique

All procedures were performed by three glaucoma consultants using uniform techniques, which are detailed below.

Trabeculectomy

A fornix-based conjunctival flap was created. Mitomycin-C (0.2 mg/mL) was administered to the scleral surface for 2–3 min. A rectangular-shaped 1/2–2/3 thick scleral flap (4 mm × 3 mm) was created, and a trabecular block (1 × 2 mm) was excised. A peripheral iridectomy was then performed, and both the scleral flap and conjunctiva were sutured using 10-0 nylon sutures.

AGV Implantation

A superior fornix-based peritomy was made and extended towards the superotemporal region. The end plate was placed 10 mm from the limbus using two 8/0 Vicryl sutures placed 7 mm from the limbus. The silicone tube was shortened, maintaining a bevel-up position, 1.5 mm in front of the limbus. A scleral tunnel was then created 4 mm behind the limbus using a 23-G needle, through which the tube was inserted into the anterior chamber, positioning with the iris plane. The posterior part of the silicone tube was covered with a pericardium. The procedure concluded by closing the conjunctiva with 8/0 Vicryl sutures.

Post-operative Follow-up

Following surgery, topical antibiotics were administered 5 times daily for 2 weeks as part of the standard post-oper-

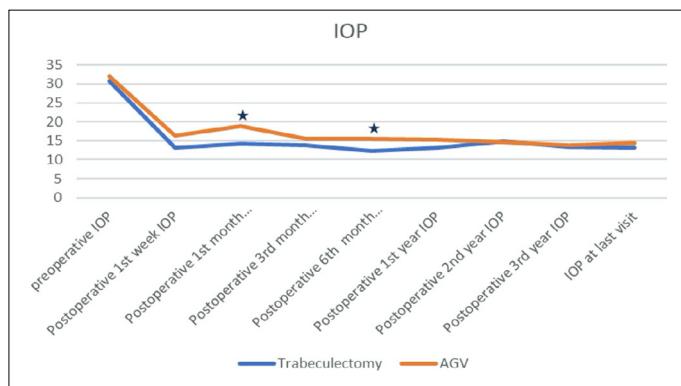
ative regimen for all patients. Topical prednisolone acetate was used 6 times daily for the initial 2 weeks before being tapered over 6 weeks. Following trabeculectomy, all cases received cyclopentolate hydrochloride eye drops thrice daily for 2 weeks.

Statistical Analysis

All statistical analyses were conducted using the Statistical Package for the Social Sciences 20.0® for Windows (IBM Corporation, Armonk, NY). Independent t-tests were utilized to compare variables between groups, and categorical data were analyzed using a Chi-square test (two-sided). The cumulative probability of success was determined using Kaplan-Meier survival analysis, and the log-rank test was performed to compare success rates. A $p<0.05$ was considered statistically significant.

Results

From a total of 58 patients, 25 eyes of 25 patients (18 Male/7 Female) were included in the trabeculectomy group, and 33 eyes of 33 patients (27 Male/6 Female) were included in the AGV group. Pre-operative characteristics of the patients are summarized in Table 1. The mean age was significantly higher in the trabeculectomy group (59.4 years vs. 46.3 years, $p=0.001$). There was no significant difference in the indications for PPV between the groups ($p=0.89$). Hence, it was used as the endotamponade during PPV for 7 eyes (28.0%) in the trabeculectomy group and 22 eyes (66.7%) in the AGV group, with a significantly higher rate of SO use in the AGV group ($P = 0.008$). All patients underwent glaucoma surgery after the removal of SO. Pre-operative BCVA, IOP, and the number of antiglaucoma medications were similar in both groups ($p>0.05$ for all).


Table 1. Demographics and baseline characteristics of the subjects

	Trabeculectomy (n=25) (%)	AGV (n=33) (%)	p
Age (mean±SD)	59.4±14.3	46.30±14.19	0.001
Lens (n)			
Phakic	4 (16.0)	1 (3.1)	0.21
Pseudophakic	19 (76.0)	28 (84.8)	
Aphakic	2 (8.0)	4 (12.1)	
Presence of glaucoma before PPV (n)	10 (40.0)	8 (24.2)	0.20
Indication for PPV (n)			
PDR and complications	5 (20.0)	6 (18.2)	0.89
Vitreomacular interface disorders	8 (32.0)	2 (6.1)	
Retinal detachment	7 (28.0)	16 (48.5)	
IOL-nucleus drop	5 (20.0)	7 (21.2)	
Endophthalmitis	0	2 (6.1)	
Tamponad used during PPV			
Silicon oil	7 (28.0)	22 (66.7)	0.008
Gas	5 (20.0)	2 (6.1)	
No tamponade	13 (52.0)	9 (27.3)	
The time of SO removal (month) (median)	4 (IQR=2, 10)	7 (IQR=3, 13.5)	0.37
BCVA	1.23±0.66 (0.3–2.7)	1.43±0.71 (0.3–3.1)	0.27
IOP	30.76±8.4 (19–47)	32.13±7.81 (16–52)	0.51
Medication	3.5±0.65 (2–4)	3.28±0.51 (2–4)	0.15
Cup/disk ratio	0.74±0.24 (0.2–1.0)	0.83±0.17 (0.5–1.0)	0.06
CCT	568.87±33.71 (516–617)	613.62±65.19 (511–695)	0.11
RNFL	74.2±16.63 (45–95)	81.45±17.67 (55–114)	0.31
Follow-up time (mean±SD)	30.76±20.4	35.02±16.91	0.2

AGV: Ahmed glaucoma valve; PPV: Pars Plana vitrectomy; PDR: Proliferative diabetic retinopathy; BCVA: Best corrected visual acuity; IOP: Intraocular pressure; CCT: Central corneal thickness; RNFL: Retinal nerve fiber layer; SD: Standard deviation; SO: Silicone oil. Categorical data were expressed as n (%).

The median follow-up time was 30.76 months in the trabeculectomy group and 35.02 months in the AGV group ($p=0.08$). No significant difference was observed in mean IOP between the groups throughout follow-up, except at the 1- and 6-month visits ($p=0.04$ and $p=0.01$, respectively), where IOP was lower in the trabeculectomy group (Fig. 1). The number of antiglaucoma medications was significantly lower in the trabeculectomy group at all follow-up visits except for at 1 week ($p<0.05$ for all, Table 2). BCVA was similar between the groups at all follow-ups ($p>0.05$ for all).

While the overall success rate was similar between the trabeculectomy (84.0%) and AGV (75.8%) groups, the com-

Figure 1. Graphic of intraocular pressure values of both groups in all follow-ups.

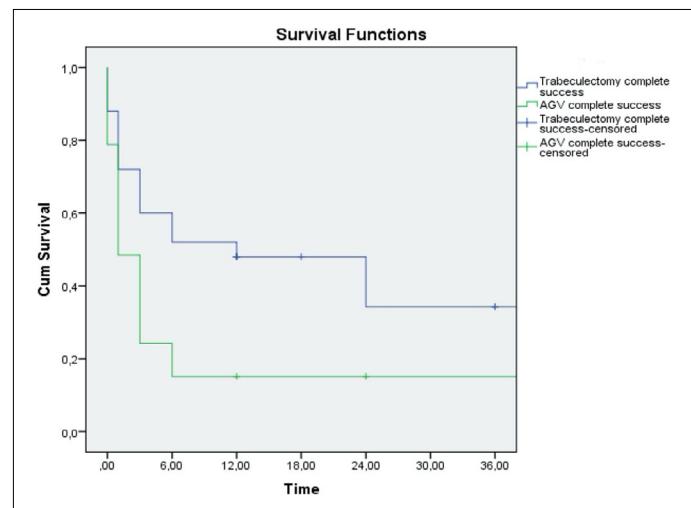
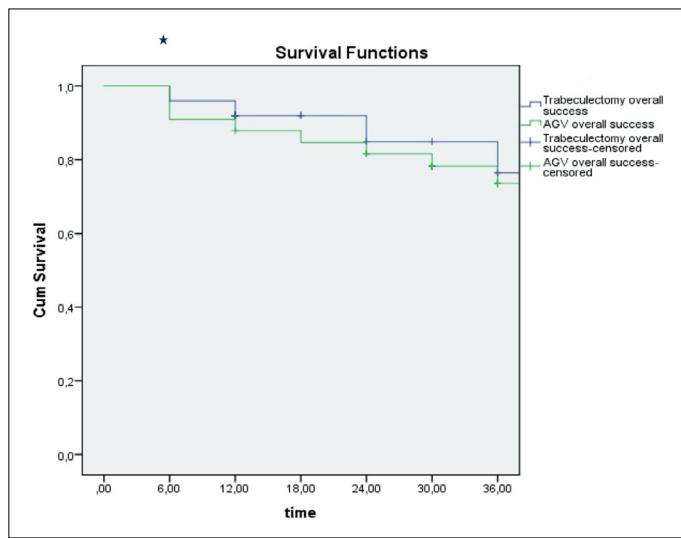

AGV:Ahmed glaucoma valve; IOP: Intraocular pressure, statistically significant.

Table 2. Mean intraocular pressure values and the number of antiglaucoma medications of both groups in all follow-ups


	Trabeculectomy	AGV	p
Post-operative 1 st week IOP	13.08±8.27 (1-35)	16.27±8.73 (2-38)	0.18
Number of antiglaucoma medication in 1 st week	0.43±1.04 (0-4)	0.72±1.31 (0-3)	0.39
Post-operative 1 st month IOP	14.12±7.78 (2-33)	18.83±8.36 (1-40)	0.04
Number of antiglaucoma medication in 1 st month	0.54±0.98 (0-3)	1.46±1.41 (0-3)	0.01
Post-operative 3 rd month IOP	13.86±5.81 (8-33)	15.4± 6.83 (2-31)	0.39
Number of antiglaucoma medication in 3 rd month	1.08±1.34 (0-4)	2.01±1.34 (0-4)	0.02
Post-operative 6 th month IOP	12.2±4.01 (4-24)	15.39±4.99 (8-33)	0.01
Number of antiglaucoma medication in 6 th month	1.32±1.43 (0-4)	2.22±1.33 (0-4)	0.02
Post-operative 1 st year IOP	13.24±5.55 (2-32)	15.27±4.67 (6-30)	0.14
Number of antiglaucoma medication in 1 st year	1.24±1.39 (0-4)	2.06±1.39 (0-4)	0.03
Post-operative 2 nd year IOP	14.84±7.79 (4-38)	14.42±3.92 (9-23)	0.82
Number of antiglaucoma medication in 2 nd year	1.23±1.42 (0-4)	2.31±1.34 (0-4)	0.03
Post-operative 3 rd year IOP	13.31±7.23 (4-34)	13.72±3.57 (7-23)	0.83
Number of antiglaucoma medication in 3 rd year	1.23-1.3 (0-3)	2.27±1.31 (0-4)	0.04
IOP at last visit	13.04±6.51 (4-38)	14.48±5.73 (8-30)	0.37
Number of antiglaucoma medication at last visit	1.56±1.55 (0-4)	2.39±1.43 (0-4)	0.04

AGV:Ahmed glaucoma valve; IOP: Intraocular pressure.

plete success rate was higher in the trabeculectomy group. The percentage of eyes free of antiglaucoma medication in the trabeculectomy group was 40.0% (10 eyes), compared to 15.2% (5 eyes) in the AGV group ($p=0.04$). Figure 2 shows the Kaplan-Meier survival curves of complete success rates, and Figure 3 represents the overall success rates of each group ($p=0.016$ and $p=0.69$, respectively). The cumulative probability of overall success at 12, 24, and 36 months was 92.0%, 88.0%, and 84.0%, respectively, in the trabeculectomy group,

Figure 2. Kaplan-Meier survival graphic showing each group's complete success rates ($p=0.016$).

Figure 3. Kaplan-Meier survival graphic showing each group's overall success rates ($p=0.69$).

and 87.8%, 81.8%, and 75.7%, respectively, in the AGV group.

When eyes were classified based on SO tamponade, the overall success rates following trabeculectomy and AGV were comparable (88.9% vs. 81.8%, respectively; $p=0.62$); however, complete success was significantly higher in the trabeculectomy group than in the AGV group (50% vs. 9.1%, respectively; $p=0.04$) among eyes without prior SO. In eyes with prior SO tamponade, the trabeculectomy and AGV groups achieved comparable rates of overall success (71.4% vs. 72.7%, respectively; $p=0.9$) and complete success (14.3% vs. 18.2%, respectively; $p=0.8$).

Bleb needling was performed in 2 eyes (8%) in the trabeculectomy group, and AGV cyst excision was performed in 4 eyes (12.2%) in the AGV group. Surgical failure occurred in 4 eyes (16.0%) in the trabeculectomy group and 8 eyes (24.2%) in the AGV group ($p=0.44$). In the trabeculectomy group, surgical failure was the result of a final IOP >22 mmHg in 2 eyes (8.0%), a final IOP lower than 5 mmHg in 1 eye (4.0%), and the need for further glaucoma surgery in 1 eye (4.0%). In the AGV group, failure was related to vision loss in 3 eyes (9.1%), final IOP over 22 mmHg in 4 eyes (12.1%), and the need for additional glaucoma surgery in 5 eyes (15.2%) (Table 3).

Table 3. Reasons for failure in each groups

	LP loss	Final IOP >22 mmHg (%)	Final IOP <5 mmHg (%)	Further glaucoma surgery (%)
Trabeculectomy group (n=25)	0	2 (8.0)	1 (4.0)	1 (4.0)
AGV group (n=33)	3 (9.1)	4 (12.1)	0	5 (15.2)

LP: Light perception; AGV: Ahmed glaucoma valve; IOP: Intraocular pressure. Categorical data were expressed as n (%).

Post-operative complications were observed in 3 (12.0%) eyes in the trabeculectomy group and 7 eyes (21.2%) in the AGV group ($p=0.36$). In the trabeculectomy group, post-operative complications included hypotony and choroidal effusion in 1 eye (4.0%), intraocular lens drop in 1 eye (4.0%), cystoid macular edema in 1 eye (4.0%), and cataract formation in 1 eye (4.0%). In the AGV group, hypotony and choroidal effusion were observed in 2 eyes (6.06%), cystoid macular edema in 2 eyes (6.06%), tube exposure in 2 eyes (6.06%), tube obstruction in 1 eye (3.03%), and bullous keratopathy in 1 eye (3.03%). In the single case of tube obstruction, tube extraction was performed due to exposure and obstruction of the tube by the iris; in the single case of bullous keratopathy, evisceration was performed due to vision loss. Two cases of choroidal effusion responded well to topical treatment, while 1 case (3.03%) in the AGV group required viscoelastic substance injection into the anterior chamber due to persistent choroidal detachment (Table 4).

Discussion

An increase in IOP following PPV is common, with even higher incidence noted when SO is used as an endotamponade (5,15). Trabeculectomy remains the gold standard for treating medically refractory glaucoma. This procedure establishes a channel between the anterior chamber and the subconjunctival space, allowing aqueous humor from the an-

Table 4. Post-operative complications in each group

	Trabeculectomy group (n=25) (%)	AGV group (n=33) (%)
Hypotony and choroidal effusion	1 (4.0)	2 (6.06)
IOL drop	1 (4.0)	
CME	1 (4.0)	2 (6.06)
Cataract formation	1 (4.0)	
Tube exposure		2 (6.06)
Obstruction of tube		1 (3.03)
Bullous keratopathy		1 (3.03)

AGV: Ahmed glaucoma valve; IOL: Intraocular lens; CME: cystoid macular edema. Categorical data were expressed as n (%).

terior chamber to drain beneath the conjunctival bleb (16). Success of trabeculectomy largely depends on the long-term viability of the bleb, with post-operative conjunctival scarring posing a substantial risk for failure (7). Thus, trabeculectomy after vitrectomy is often less successful. However, advances in vitrectomy technology have led to more minimally invasive procedures, shorter operation times, and reduced complication rates. These likely contribute to decreased conjunctival fibroblast proliferation, reduced chemical factors in the vitreous, and the presence of fewer inflammatory cells (12).

GDDs are widely used, especially in cases at high risk for bleb failure, such as in patients with neovascular glaucoma (NVG) or those who have undergone vitrectomy or other conjunctival incisional procedures. GDDs include a silicone tube that allows aqueous outflow from the anterior chamber to an endplate. However, they have notable limitations, including restriction of ocular movement, potential tube exposure, a higher rate of early hypotony, corneal touch, and an increased need for penetrating keratoplasty. Consequently, many surgeons reserve GDDs for refractory cases (14,17). Further research on the optimal surgical methods for managing glaucoma in vitrectomized eyes is essential to determine the most effective strategy.

We compared the long-term outcomes of trabeculectomy and AGV implantation in a population of vitrectomized eyes. During an average follow-up of 33.17 months, complete success was achieved in 40.0% of eyes in the trabeculectomy group and 15.2% in the AGV group, while overall success rates were 84.0% and 75.8%, respectively. Complete success was higher in the trabeculectomy group, and 40.0% of eyes remained medication-free at the final follow-up ($p=0.04$). The cumulative probabilities of success were 92.0% and 87.8% at 1 year, 88.0% and 81.8% at 2 years, and 84.0% and 75.7% at 3 years in the trabeculectomy and AGV groups, respectively.

A previous study reported the success rates of trabeculectomy after vitrectomy as 55.1%, 45.3%, and 43.1% at 1-, 2-, and 3-year post-surgery, respectively. Their lower success rates were attributed to the high prevalence of NVG (67.2%) and uveitis (7.2%) in the cohort (12). Chronic inflammation and NVG are well-established risk factors for trabeculectomy failure (7). Neovascularization is considered to impair post-operative wound healing. In addition, factors such as extensive conjunctival inflammation, scarring, increased influx of vasoactive materials from the vitreous into the anterior chamber, and post-vitrectomy inflammation may contribute to poor outcomes after trabeculectomy in vitrectomized eyes (12,18,19). The trabeculectomy success rates for vitrectomized NVG cases were reported as 62.6% at 1 year and 58.2% at 2 years post-surgery in the study by Takihara et al. (19). In contrast, the success rates demonstrated in the current study were higher than previously reported, which may be attributed to

differences in patient populations. Our cohort included eyes that had undergone vitrectomy due to various indications; the single NVG case in the trabeculectomy group failed postoperatively after 12 months. In addition, 2 eyes required bleb needling during follow-up, although this was not regarded as a failure in our study.

Trabeculectomy is considered more likely to fail in eyes where SO was used as the endotamponade during vitrectomy. This is mainly due to conjunctival scarring and emulsified SO, which can induce inflammation and fibrosis (20). Among our patients, 7 eyes (28.0%) had prior SO endotamponade, and none experienced failure in the long term, except for the single NVG case. The rate of prior SO tamponade was more prevalent in the AGV cohort (66.7%). When eyes were subgrouped according to prior SO tamponade, complete success was significantly higher in the trabeculectomy group than in the AGV group among eyes without prior SO. However, in eyes without prior SO, overall success rates were similar between the two groups, and both complete and overall success rates were comparable in eyes with prior SO tamponade. Notably, the median SO removal time in these eyes was 4 months, significantly shorter than the durations reported in the literature (20). In addition, although not statistically significant, SO was removed even sooner in the trabeculectomy group, which may have further contributed to the favorable outcomes.

Previously reported success rates of AGV implantation after vitrectomy range between 62% and 80% at 12- and 24-month follow-up, comparable to our findings (13,14,21,22). Lower visual acuity, higher pre-operative IOP, presence of NVG, and prior glaucoma surgery have all been identified as factors predicting failure in tube shunt procedures (23,24). Meanwhile, in a study comparing outcomes of AGV implantation in vitrectomized eyes with and without SO endotamponade, mean IOP, number of medications, and complication rates were similar between the two groups after 2 years (14). However, the success rate was 70.2% in eyes with SO and 87.2% in eyes without SO, suggesting SO to be a risk factor for AGV failure (14). Early SO removal may facilitate IOP control, but the risk of recurrent retinal detachment often restricts this possibility. In the present study, the overall AGV success rate was 75.8%, and a majority of AGV-implanted eyes (60.6%) required antiglaucoma medications for IOP management, consistent with previous studies (13,14,21,22,25). In our series, 66.7% of AGV-implanted eyes had prior SO endotamponade, which was removed in a median of 7 months.

El-Saied et al. (13) evaluated four different glaucoma surgeries in vitrectomized eyes using a more homogenous population, in which all eyes had undergone vitrectomy for retinal detachment with SO endotamponade. At 12-month follow-

up, the authors reported the highest success rate with the Ex-Press mini shunt (100%), followed by the AGV implantation (80%). Both trabeculectomy and deep sclerectomy surgeries had a lower success rate (50%) (13). In the present study, overall success rates were comparable between the two groups (84% in the trabeculectomy group and 76% in the AGV group). While the success rate of AGV was consistent with previous studies, trabeculectomy demonstrated a greater success rate than previously reported. This difference may be attributed to the higher proportion of cases with SO endotamponade and a younger mean age in the AGV group compared to the trabeculectomy group in our study.

Previous investigations demonstrate that younger age is an independent risk factor for post-operative failure after both trabeculectomy and AGV implantation. This association is generally attributed to the more pronounced inflammatory response in younger patients, which accelerates bleb scarring and implant encapsulation (12,13,23,24). In our series, the mean age of the trabeculectomy cohort was substantially higher than that of the AGV cohort; this difference may have favorably influenced the surgical outcomes observed in the trabeculectomy group.

Post-operative complications were observed at similar rates in both groups. In vitrectomized eyes, hypotony and choroidal effusion are among the most common complications following glaucoma surgery (13,25). El-Saied et al. (13) report hypotony in 50% of eyes following AGV implantation and in 40% of eyes following trabeculectomy. Pakravan et al. (25) reported choroidal effusion in 4 out of 15 eyes after trabeculectomy and in 2 out of 15 eyes following AGV implantation in a cohort of vitrectomized and aphakic eyes; suprachoroidal hemorrhage occurred in 2 other eyes in their AGV group. In our study, hypotony was observed in 3 (12%) cases in the trabeculectomy group and 3 (9.1%) cases in the AGV group at the 1-month post-surgical visit. However, chronic hypotony had developed in only one trabeculectomy case by the final follow-up, which was considered a surgical failure in our study. Other complications observed in our series included tube exposure and tube obstruction, both of which demanded further surgical intervention.

The primary limitations of this study include the relatively small cohort of patients, the heterogeneity of the groups in terms of PPV indications, its retrospective design, and the lack of patient randomization. The unequal distribution and duration of SO tamponade between the trabeculectomy and AGV groups, as well as the high mean age in the trabeculectomy group, may have influenced surgical outcomes, thereby limiting the generalizability of the comparative results. Nevertheless, the current study's findings suggest that trabeculectomy may have outcomes as favorable as AGV in the long term in selected vitrectomized eyes.

Conclusion

Although both AGV implantation and trabeculectomy demonstrated comparable results in vitrectomized eyes, this finding should be interpreted with caution due to differences in patient characteristics between the groups. The need for post-operative antiglaucoma medications was lower following trabeculectomy, which may indicate its potential as a favorable option in appropriately selected eyes. Ultimately, the decision between these two surgical options should be guided by the surgeon's expertise and an assessment of conjunctival mobility and integrity.

Disclosures

Ethics Committee Approval: This study was approved by the Health Sciences University Hamidiye Scientific Research Ethics Committee (Date: 14.03.2024, Number: 3/37) and conducted in accordance with the tenets of the Declaration of Helsinki.

Informed Consent: Written informed consents were obtained from all patients.

Conflict of Interest: None declared.

Funding: The authors declare that this study has received no financial support.

Use of AI for Writing Assistance: Not declared.

Author Contributions: Concept – G.G.A., N.A.; Design – I.C., N.A., G.G.A.; Supervision – T.Y., N.A., C.A.; Resource – A.S.B., Y.S.D.; Materials – A.S.B., Y.S.D., G.T.; Data Collection and/or Processing – A.S.B., Y.S.D., G.G.A.; Analysis and/or Interpretation – G.G.A., N.A.; Literature Search – N.A., G.G.A.; Writing – G.G.A., N.A., I.C.; Critical Reviews – C.A., T.Y., N.A.

Peer-review: Externally peer-reviewed.

References

1. Zborowski-Gutman L, Treister G, Naveh N, Chen V, Blumenthal M. Acute glaucoma following vitrectomy and silicone oil injection. *Br J Ophthalmol* 1987;71:903–6. [\[CrossRef\]](#)
2. Henderer JD, Budenz DL, Flynn HW Jr, Schiffman JC, Feuer WJ, Murray TG. Elevated intraocular pressure and hypotony following silicone oil retinal tamponade for complex retinal detachment: incidence and risk factors. *Arch Ophthalmol* 1999;117:189–95. [\[CrossRef\]](#)
3. Weinberg RS, Peyman GA, Huamonte FU. Elevation of intraocular pressure after pars plana vitrectomy. *Albr Von Graefes Arch Klin Exp Ophthalmol* 1976;200:157–61. [\[CrossRef\]](#)
4. Aaberg TM, Van Horn DL. Late complications of pars plana vitreous surgery. *Ophthalmology* 1978;85:126–40. [\[CrossRef\]](#)
5. Gedde SJ. Management of glaucoma after retinal detachment surgery. *Curr Opin Ophthalmol* 2002;13:103–9. [\[CrossRef\]](#)
6. Nguyen QH, Lloyd MA, Heuer DK, Baerveldt G, Minckler DS, Lean JS, et al. Incidence and management of glaucoma after intravitreal silicone oil injection for complicated retinal detachments. *Ophthalmology* 1992;99:1520–6. [\[CrossRef\]](#)
7. Broadway DC, Chang LP. Trabeculectomy, risk factors for fail-

ure and the preoperative state of the conjunctiva. *J Glaucoma* 2001;10:237–49. [\[CrossRef\]](#)

8. Erçalık NY, İmamoğlu S. Ahmed Glaucoma Valve Implantation in Vitrectomized Eyes. *J Ophthalmol* 2018;2018:9572805. [\[CrossRef\]](#)

9. Hong JW, Choi GJ. Ahmed valve implantation for refractory glaucoma following pars plana vitrectomy. *Korean J Ophthalmol* 2005;19:293–6. [\[CrossRef\]](#)

10. Van Aken E, Lemij H, Vander Haeghen Y, de Waard P. Baerveldt glaucoma implants in the management of refractory glaucoma after vitreous surgery. *Acta Ophthalmol* 2010;88:75–9. [\[CrossRef\]](#)

11. Aktas Z, Ucgul AY, Ozdek S, Boluk CE. Outcomes of Gonioscopy-assisted Transluminal Trabeculotomy in Vitrectomized Patients With Secondary Glaucoma After Silicone Oil Removal. *J Glaucoma* 2021;30:e114–e118. [\[CrossRef\]](#)

12. Inoue T, Inatani M, Takihara Y, Awai-Kasaoka N, Ogata-Iwao M, Tanihara H. Prognostic risk factors for failure of trabeculectomy with mitomycin C after vitrectomy. *Jpn J Ophthalmol* 2012;56:464–9. [\[CrossRef\]](#)

13. El-Saied HM, Abdelhakim Mase. Different Surgical Modalities For Management Of Persistent Glaucoma After Silicone Oil Removal In Vitrectomized Eyes: One Year Comparative Study. *Retina* 2017;37:1535–43. [\[CrossRef\]](#)

14. Ishida K, Ahmed II, Netland PA. Ahmed glaucoma valve surgical outcomes in eyes with and without silicone oil endotamponade. *J Glaucoma* 2009;18:325–30. [\[CrossRef\]](#)

15. Wangsupadilok B, Tansuebchueasai N. Pars Planectomy: Preliminary Report of a New Glaucoma Filtering Technique in Vitrectomized Eyes. *Clin Ophthalmol* 2021;15:791–8. [\[CrossRef\]](#)

16. Cairns JE. Trabeculectomy. Preliminary report of a new method. *Am J Ophthalmol* 1968;66:673–9. [\[CrossRef\]](#)

17. Al-Aswad LA, Netland PA, Bellows AR, Ajdelsztajn T, Wadhwani RA, Ataher G, Hill RA. Clinical experience with the double-plate Ahmed glaucoma valve. *Am J Ophthalmol* 2006;141:390–1. [\[CrossRef\]](#)

18. Kiuchi Y, Sugimoto R, Nakae K, Saito Y, Ito S. Trabeculectomy with mitomycin C for treatment of neovascular glaucoma in diabetic patients. *Ophthalmologica* 2006;220:383–8. [\[CrossRef\]](#)

19. Takihara Y, Inatani M, Fukushima M, Iwao K, Iwao M, Tanihara H. Trabeculectomy with mitomycin C for neovascular glaucoma: prognostic factors for surgical failure. *Am J Ophthalmol* 2009;147:912–8, 918.e1. [\[CrossRef\]](#)

20. Cornacel C, Dumitrescu OM, Zaharia AC, Pirvulescu RA, Munteanu M, Tataru CP, et al. Surgical treatment in silicone oil-associated glaucoma. *Diagnostics (Basel)* 2022;12:1005. [\[CrossRef\]](#)

21. Gupta S, Chaurasia AK, Chawla R, Kapoor KS, Mahalingam K, Swamy DR, et al. Long-term outcomes of glaucoma drainage devices for glaucoma post-vitreoretinal surgery with silicone oil insertion: a prospective evaluation. *Graefes Arch Clin Exp Ophthalmol* 2016;254:2449–54. [\[CrossRef\]](#)

22. Al-Jazzaf AM, Netland PA, Charles S. Incidence and management of elevated intraocular pressure after silicone oil injection. *J Glaucoma* 2005;14:40–6. [\[CrossRef\]](#)

23. Bowden EC, Choudhury A, Gedde SJ, Feuer WJ, Christakis PG, Savatovsky E, et al.; ABC, AVB, and TTV Study Groups. Risk factors for failure of tube shunt surgery: A pooled data analysis. *Am J Ophthalmol* 2022;240:217–24. [\[CrossRef\]](#)

24. Souza C, Tran DH, Loman J, Law SK, Coleman AL, Caprioli J. Long-term outcomes of Ahmed glaucoma valve implantation in refractory glaucomas. *Am J Ophthalmol* 2007;144:893–900. [\[CrossRef\]](#)

25. Pakravan M, Homayoon N, Shahin Y, Ali Reza BR. Trabeculectomy with mitomycin C versus Ahmed glaucoma implant with mitomycin C for treatment of pediatric aphakic glaucoma. *J Glaucoma* 2007;16:631–6. [\[CrossRef\]](#)

A 5-Year Analysis of Optical Coherence Tomography Biomarkers in The Visual Outcomes of an As-Needed Treatment Algorithm for Neovascular Age-Related Macular Degeneration

Ozlem Candan,¹ Guner Uney,¹ Dicle Hazirolan,² Nurten Unlu,¹ Mehmet Akif Acar³

¹Department of Ophthalmology, University of Health Sciences Ankara Training and Research Hospital, Ankara, Türkiye

²Department of Ophthalmology, Memorial Ataşehir Hospital, İstanbul, Türkiye

³Department of Ophthalmology, Private Budak Eye Centre, Ankara, Türkiye

Abstract

Objectives: This study aimed to predict the visual course of patients with neovascular age-related macular degeneration by analyzing data from a 5-year observational study and to identify biomarkers that have an impact on visual prognosis.

Methods: The present study comprised a total of 104 patients who received the PRN treatment regimen between March 2015 and March 2021. Best-corrected visual acuity (BCVA) and optical coherence tomography findings were evaluated. Multinomial logistic regression models were used to determine predictors of BCVA at 12, 24, and 60 months.

Results: Better BCVA and thicker macula at baseline, decreased BCVA at month 3, and persistence of IRF at month 3 were correlated with decreased BCVA at month 12 (all $p<0.05$). At 24 month, a decline in BCVA was associated with specific baseline characteristics, including better BCVA, absence of pigment epithelial detachment (PED), and presence of intraretinal cystoid fluid (IRF) (all $p<0.01$). Similarly, decreased BCVA and thicker macula in the 3rd month were associated with worse BCVA. At the 60-month visit, better baseline BCVA, absence of PED, presence of IRF at baseline, and persistence of IRF at month 3 were associated with a reduction in BCVA (all $p<0.05$). The visual prognosis had no correlation with the number of injections.

Conclusion: This 5-year real-life study identified prognostic markers that cause a decline in visual acuity. The use of these markers has the potential to be valuable in preserving visual gain, irrespective of the number of injections.

Keywords: Anti-vascular endothelial growth factor, Biomarkers, Neovascular age-related macular degeneration, Real-life, Visual prognosis

Introduction

In the year 2020, age-related macular degeneration (AMD) was listed as one of the primary causes of loss of vision in people aged 50 and over worldwide (18 million cases) (1). In

the case of neovascular AMD (nAMD), the development of subretinal or sub-retinal pigment epithelium (RPE) choroidal neovascularization (NV) can irreversibly reduce visual acuity (VA) (2).

How to cite this article: Candan O, Uney G, Hazirolan D, Unlu N, Acar MA. A 5-Year Analysis of Optical Coherence Tomography Biomarkers in The Visual Outcomes of an As-Needed Treatment Algorithm for Neovascular Age-Related Macular Degeneration. Beyoglu Eye J 2025; 10(4): 226-234.

Address for correspondence: Ozlem Candan, MD. Department of Ophthalmology, University of Health Sciences Ankara Training and Research Hospital, Ankara, Türkiye

Phone: +90 312 595 34 70 **E-mail:** ozlem_aydnoglu@hotmail.com

Submitted Date: April 25, 2025 **Revised Date:** November 05, 2025 **Accepted Date:** November 12, 2025 **Available Online Date:** January 19, 2026

Beyoglu Eye Training and Research Hospital - Available online at www.beyoglueye.com

OPEN ACCESS This is an open access article under the CC BY-NC license (<http://creativecommons.org/licenses/by-nc/4.0/>).

Intravitreal anti-vascular endothelial growth factor (VEGF) injection therapy has been demonstrated to minimize macular complications by suppressing neovascular membrane formation (2-6). However, despite the use of these agents, only some patients achieve the desired VA gain and anatomic improvement. Therefore, some studies have been undertaken to predict the treatment response of patients with nAMD. In these studies, biomarkers (age, genetic factors, initial VA) and optical coherence tomography (OCT)-based markers (status of vitreomacular interface, presence of fibrovascular or serous pigment epithelial detachment (PED), subretinal and intraretinal fluid, hyperreflective foci [HF]) were thoroughly investigated to identify the characteristics of patients requiring intensive treatment (5-7). Personalized disease prognosis can be achieved by describing probable prognostic factors using biomarkers.

The objective of our study was to ascertain the prognostic factors and biomarkers that affect visual outcomes by analyzing real-life data and establishing criteria for creating personalized disease prognoses for treatment-naïve patients. This study represents the first investigation, to the best of our knowledge, to provide 5 years of real-life data in Türkiye, with the aim of identifying biomarkers that can be used to predict visual outcomes of nAMD treatment.

Methods

This retrospective study was conducted in the medical retina department of a tertiary care center between March 2015 and 2021. The medical records of patients who received intravitreal anti-VEGF injections for nAMD were reviewed. The study followed the tenets of the Declaration of Helsinki and it was approved by the ethics committee of Ankara Training and Research Hospital. Informed consent was obtained from all participants. The trial registration number (retrospectively registered) was E-21-687 (August 18, 2021).

The study comprised a series of patients aged 50 years and over who underwent intravitreal injection of anti-VEGFs for nAMD, with a 5-year follow-up period. The study excluded all patients who had any disease causing choroidal neovascular membrane formation other than AMD, any retinal and corneal pathology affecting VA, and image quality. In addition, patients with a history of intraocular surgery, except uncomplicated phacoemulsification with intraocular lens implantation, and a history of uveitis and any hereditary retinal disease were excluded.

Following the administration of 3-month loading doses of afibercept (Eylea®, Bayer, Berlin, Germany) or ranibizumab (Lucentis®; Genentech/Roche, USA), the treatment algorithm was adapted to an as-needed (PRN) basis. OCT follow-ups were conducted at 4–6-week intervals to monitor patient progress. We performed retreatment when there

was a decrease of one or more lines in VA due to disease activity, persistence of intraretinal or subretinal fluid (SRF), an increase of more than 100 µm in central macular thickness (CMT), or development of new-onset macular hemorrhage. A decreased VA due to central atrophy was not an indication for injection.

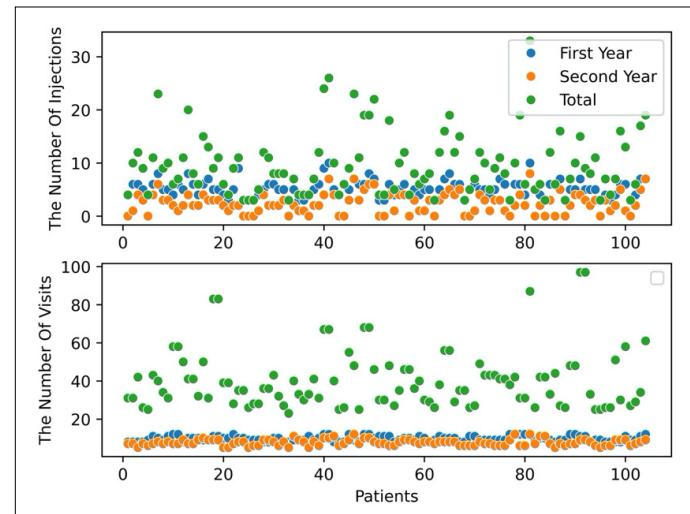
All patients underwent a complete ophthalmic examination, including medical and family history, best-corrected visual acuity (BCVA, measured on an early treatment diabetic retinopathy study [ETDRS] chart converted to logarithm of the minimum angle of resolution [logMAR]), intraocular pressure measurement, slit-lamp biomicroscopy, and dilated fundus examination using a 90 D lens during the follow-up. OCT (Heidelberg Engineering, Franklin, MA 02038, USA) and fundus fluorescein angiography (Carl Zeiss Meditec, Inc., Dublin, CA) were performed in all patients with AMD. The types of choroidal NV (CNV) were recorded. CMT measurements were obtained using spectral domain OCT. The BCVA and CMT values, as well as the OCT findings (presence of PED, intraretinal, and SRF), were evaluated at the baseline visit and at 3, 6, 12, 24, and 60 months. The extent of VA (logMAR) changes over time was determined by calculating the differences between eye-specific logMAR averages at initial and at every visit. The total number of injections administered and the total number of visits made by patients were meticulously calculated.

Cross-sectional images were analyzed using built-in software, and automated software was used to segment the retinal layers in foveal scans. Retinal thickness map analysis was performed using spectralis software on nine subfields according to the ETDRS definitions. CMT was measured as the average of all points within the inner circle of 1 mm radius. The presence of SRF, intraretinal cystoid fluid, PED, and HF was evaluated on OCT scans within 3 mm fovea at the baseline visit. The vitreomacular interface was classified according to the classification system established by the international vitreomacular traction (VMT) study group. This classification was based on OCT images. OCT markers were evaluated for their effects on VA at 12, 24, and 60th months.

The clinical factors assessed included the patient's age, sex, and visual acuity as well as the findings of the OCT scan at baseline and at 3 months. The influence of these factors on the final visual outcomes at 12, 24, and 60 months was analyzed.

Statistical Analysis

Statistical analyses were performed using the Statistical Package for the Social Sciences (SPSS) 27 software. (SPSS, Inc. Chicago, IL). Descriptive statistics are given as mean±standard deviation or median (minimum-maximum) for continuous variables and frequency (%) for categorical variables. The assessment of normality was conducted by Kolmogorov-


Smirnov test. Multinomial logistic regression models were used to identify predictors of VA at 12, 24, and 60 months. Patients were categorized into three groups according to the degree of change in their BCVAs, as outlined in the following sentence. An absolute difference of <0.2 logMAR was deemed to be a non-clinically relevant change, whereas an increase of 0.2 logMAR or greater was considered a decrease in VA, and a decrease of 0.2 logMAR or greater was regarded as an improvement in VA (7). The dependent variables were the BCVA status at 12, 24, and 60 months (decreased was defined as "1," a non-clinically relevant change was defined as "2," and increased was defined as "3"). The independent variables were baseline clinical and OCT findings. Numerical values (e.g., baseline BCVA, age, CMT) were included as continuous variables in the multinomial regression analysis. $P<0.05$ was considered to be statistically significant.

Results

A total of 223 patients who were followed up in the retina outpatient clinic and received regular treatment between March 2015 and March 2021 were identified. However, the current study incorporated a total of 104 eyes from 104 patients, with consistent longitudinal follow-up for 5 years. Fifty patients were male and 54 were female; the mean age of the patients was 71.66 ± 9.28 (51–92) years. Angiographically,

the CNV lesions were occult in 45%, minimally classic in 28.9%, predominantly classic in 17.7%, and retinal angiomatic proliferation in 8.4%. Table 1 presents a comprehensive overview of the patients' demographic characteristics, while Figure 1 illustrates the mean number of visits and injections.

The mean BCVA was 0.40 (0.00–3.0) logMAR at baseline. The mean VA changes at 3, 6, 12, 24, and 60th months were -0.07 , -0.09 , -0.05 , 0.0 , and $+0.025$ logMAR, respectively. The

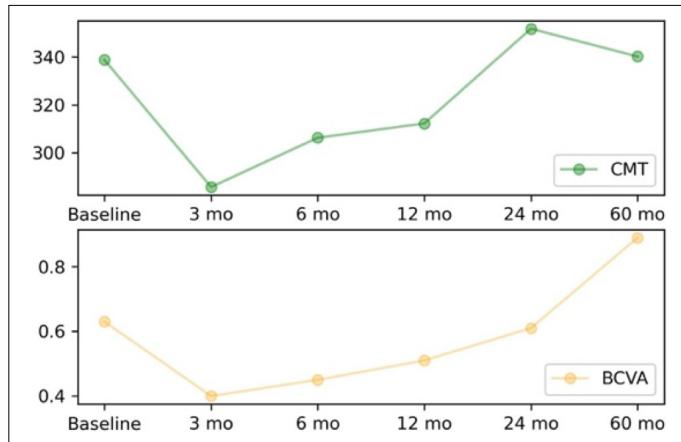
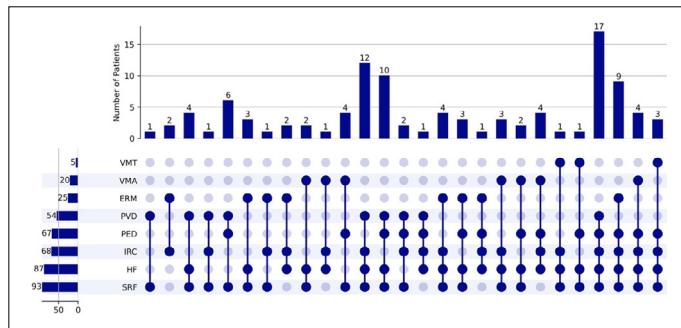

Figure 1. The mean number of visits and injections.

Table 1. Summary of the data of the study group


No. of patients/eyes at the beginning of study	104/104
Mean age (range, year)	71.66 ± 9.28 (51–93)
Gender Male/Female (%)	50/54 (48/52)
Type of CNV lesion	
Type 1	47 eyes (45.1%)
Type 2	30 eyes (28.8% minimally classic) 19 eyes (18.2% predominantly classic)
Type 3	8 eyes (8.2% RAP)
Anti-VEGF agents	
Ranibizumab/Aflibercept/(eyes)	93/11
The mean number of injections (mean \pm SD/median, minimum-maximum)	
1st year	$5.2\pm1.5/5$ (3–10)
2nd year	$2.6\pm2.0/2.5$ (0–8)
During the follow-up period	$9.75\pm5.9/9$ (3–33)
The mean number of visits (mean \pm SD/median, minimum-maximum)	
1st year	$9.8\pm1.4/9.5$ (8–12)
2nd year	$7.6\pm1.7/7$ (5–12)
During the follow-up period	$40.16\pm15.5/38$ (22–97)

SD: Standard deviation; VEGF: Vascular endothelial growth factor; CNV: Choroidal neovascularization; RAP: Retinal angiomatic proliferation.

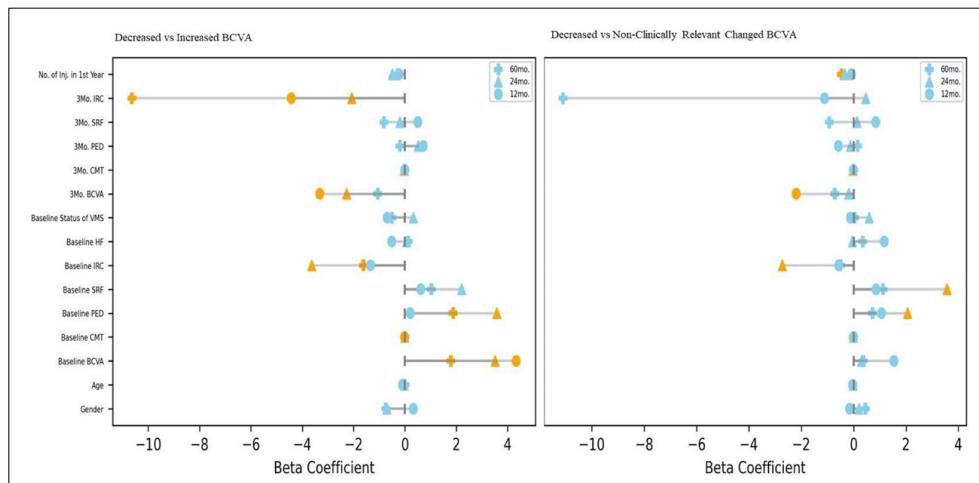

mean baseline CMT was 302.5 (204–948) μm , and the mean CMT change at 3, 6, 12, 24, and 60th months after treatment was $-27.50, -11, -6.5, +14.50, +7.50$ μm , respectively (Fig. 2).

Figure 2. The mean visual acuity and central macular thickness changes during the follow-up.

Figure 3. OCT findings of the patients at baseline visit.
OCT: Optical coherence tomography, PED: Pigment epithelial detachment, IRC: Intraretinal cystoid fluid, SRF: Subretinal fluid, HF: Hyper-reflective foci, ERM: Epiretinal membrane, PVD: Posterior vitreous detachment, VMA: Vitreomacular adhesion, VMT: Vitreomacular traction.

Figure 4. The results of the multinomial logistic regression analysis (The statistical significance of the results is indicated by the use of orange icons, while non-significant results are represented by blue icons).

The most common OCT findings at baseline visit were SRF (91.6%), HF (79.4%), PED (57%), and intraretinal fluid/cyst (54.1%). Figure 3 shows the OCT findings of patients at the baseline visit.

Multinomial logistic regression analysis was conducted to evaluate the combined impact of clinical and OCT biomarkers at baseline and after 3 monthly loading doses on BCVA status at 12, 24, and 60 months. Better baseline BCVA ($p<0.001$), thicker macula at baseline ($p=0.013$), decreased BCVA at the 3rd month ($p<0.001$), and IRF resistance at month 3 ($p<0.001$) were found to be associated with decreased BCVA at the 12th month. At the 24 months, a statistically significant correlation was observed between the decreased BCVA and several baseline characteristics. These included better baseline BCVA ($p<0.001$), absence of PED ($p=0.008$), and presence of IRF ($p=0.006$). Furthermore, decreased BCVA ($p=0.005$), thicker CMT ($p=0.017$) at the 3rd month, and persistence of IRF at the 3rd month were identified as significant factors associated with decreased BCVA. At the 60 months, a better baseline BCVA ($p=0.01$), absence of PED ($p=0.026$), presence of IRF ($p=0.019$) at baseline, and persistence of IRF at month 3 ($p=0.002$) were linked to a decline in BCVA (Table 2 and Fig. 4).

Discussion

In this study, the real-world data of anti-VEGF agents used in the treatment of AMD over a 5-year follow-up period were evaluated. Furthermore, we identified biomarkers and OCT markers that may affect BCVA at 12, 24, and 60 months.

An extensive number of studies have been conducted to evaluate the outcomes of PRN and Treat-and-Extend (T and E) regimens, as compared with monthly injections. The number of injections in PRN studies was lower than that in T and E regimens. Almost all previous studies demon-

Table 2. The results of multinomial regression analysis

	Decreased BCVA versus Increased BCVA												Decreased BCVA versus Unchanged BCVA					
	12 Mo				24 Mo				60 Mo				12 Mo				24 Mo	
	P	Odds ratio	P	Odds ratio	P	Odds ratio	P	Odds ratio	P	Odds ratio	P	Odds ratio	P	Odds ratio	P	Odds ratio	P	Odds ratio
Gender	0.74	1.39	0.52	0.50	0.35	0.48	0.83	0.86	0.79	1.23	0.49	1.57						
Age	0.08	0.91	0.62	0.97	0.95	1.00	0.42	0.97	0.68	0.98	0.26	0.96						
Baseline BCVA	0.00	76.09	0.00	33.54	0.01	5.98	0.32	4.67	0.82	1.36	0.63	1.45						
Baseline CMT	0.02	0.98	0.58	1.00	0.43	1.00	0.37	1.00	0.48	1.00	0.01	0.99						
Baseline PED	0.85	1.22	0.01	36.02	0.02	6.56	0.16	2.90	0.02	7.87	0.30	2.06						
Baseline SRF	0.62	1.85	0.16	9.13	0.43	2.80	0.37	2.36	0.01	35.55	0.21	3.07						
Baseline IRC	0.21	0.26	0.01	0.03	0.04	0.20	0.47	0.57	0.02	0.07	0.47	0.61						
Baseline HF	0.63	0.60	0.96	1.07	0.88	1.14	0.17	3.22	0.97	0.96	0.66	1.42						
Baseline status of the vitreomacular surface	0.25	0.50	0.60	1.40	0.28	0.60	0.77	0.88	0.24	1.81	0.92	1.04						
3 Mo. BCVA	0.00	0.04	0.01	0.10	0.27	0.35	0.04	0.11	0.87	0.83	0.47	0.49						
3Mo. CMT	0.47	0.99	0.02	0.98	0.92	1.00	0.30	0.99	0.01	0.98	0.68	1.00						
3Mo. PED	0.55	2.04	0.66	1.68	0.81	0.82	0.52	0.56	0.90	0.89	0.84	1.16						
3Mo. SRF	0.69	1.66	0.88	0.82	0.40	0.44	0.39	2.34	0.90	1.14	0.28	0.39						
3Mo. IRC	0.03	0.01	0.04	0.13	0.04	0.00	0.45	0.33	0.75	1.60	0.80	0.00						
No. of injections in 1st year	0.49	0.80	0.19	0.61	0.23	0.75	0.74	0.92	0.27	0.71	0.04	0.63						

BCVA: Best-corrected visual acuity, PED: Pigment epithelial detachment, IRC: Intraretinal cystoid fluid, SRF: Subretinal fluid, CMT: Central macular thickness, Mo: month, HF: Hyper-reflective foci.

strated that as injections increased, patients gained more letters and demonstrated excellent vision maintenance (5-7). The mean number of injections in the initial year of treatment was 5.2, which is consistent with the findings of other studies (8,9). In the subsequent year under the PRN regimen, this number decreased to an average of 2.6 injections. The findings of this study indicate that the number of injections in the 1st year of treatment has no effect on visual prognosis. However, although visual acuity stability was maintained during the first 2 years of treatment, it was not sustained at 60 months. One potential strategy to address this issue could be to determine the frequency of injections based on the prognostic factors identified in the present study.

We analyzed prognostic indicators at baseline and at month 3 to predict individual treatment prognosis. In previous studies, patient age has been reported as a biomarker of treatment response. In most of these studies, younger patient age was correlated with good final VA results (2,3,5,10,11). In the current study, patient age was not correlated with BCVA during follow-up. The mean age of our patients was 71.66 and the proportion of patients aged <65 years was only 23%, indicating that our patients predominantly comprised elderly individuals.

Wang et al.(12) reported that men exhibited a 2.19-fold increased risk of reinjection than women. Similarly, the 5-year follow-up results of the comparison of AMD treatment trial (CATT) study demonstrated that, compared to men, women were more likely to gain a minimum of 15 letters (13). In the current study, there was no difference in the follow-up between females and males. These results match those observed in previous studies (14,15).

Another important predictor of visual improvement was the baseline VA level. A number of studies correlated poor baseline VA with better visual outcomes at year 1 and year 2; however, some studies reported better baseline VA as a predictor of better final VA (4,5,16,17). In our study, poor baseline VA had a significantly positive effect on VA level in all visits. However, even if patients with poor baseline VA seem to gain more VA, they will have poorer final VA. Several reports have shown that initiating treatment early is one of the significant factors for improved visual outcomes (18,19).

As demonstrated in preceding studies, the BCVA level following three loading doses has been identified as a significant predictor of the final visual outcome (5,11). The present study's findings provide further evidence in support of this hypothesis, thereby demonstrating a positive correlation between VA levels following three loading doses and VA levels at 12, 24, and 60 months. The BCVA level achieved after three loading doses was valuable for predicting long-term visual prognosis.

OCT-based biomarkers are used to predict visual prognosis while assessing treatment response. At present, CMT is not used as a monitoring or retreatment indicator. Therefore, evaluating CMT alone is insufficient to distinguish subtle changes in retinal compartments. Furthermore, there was a weak correlation between VA and retinal thickness. Our results indicate that baseline CMT significantly affects VA at month 12, but not at 24 and 60 months. However, a thick macula after three loading doses affected the BCVA at month 24. A thicker central macula may unfortunately lead to morphological changes in the retinal layers, resulting in a poorer long-term visual prognosis.

Another significant biomarker investigated in previous studies is the location of fluid within the retinal layers, including intraretinal and SRF. In most of the previous studies, the presence of SRF at baseline and during follow-up was associated with favorable visual outcomes (20,21). While there are studies showing that SRF <200 μ m can be tolerated with no negative effect on VA, there are also studies showing a progressive decrease in retinal sensitivity in eyes with SRF (22,23). The present study found no statistically significant correlation between the presence of SRF at baseline or at 3 months and subsequent visual prognosis during follow-up. In contrast, a number of earlier studies have shown that the existence of IRF at baseline and throughout the follow-up period is indicative of a poor final visual prognosis (13,14,21). Our findings align with those of numerous preceding studies, which have demonstrated a correlation between the presence of baseline IRF and a decline in BCVA over time. Similarly, the results of the multinomial logistic regression analysis in our study indicated that the presence of IRF following loading doses has a negative predictive value for visual gain.

The presence of PED and its persistence after loading are prognostic factors evaluated in previous studies. The association between the presence of PED at the baseline visit and visual outcomes has been reported in previous studies (14). Some reports indicate no significant association with the risk of inferior visual outcomes, whereas others specifically state that PED width predicts disease progression (24,25). In addition, it has been documented that fibrovascular or vascularized PED may result in a less favorable visual outcome. Nonetheless, certain studies have indicated a possibility that the presence or persistence of PED may be associated with relatively good VA (26). The present study found that the presence of PED at baseline had no effect on VA at 12 months. However, it was linked to better VA at 24 and 60 months. The present study did not concentrate on a comparison between serous and fibrovascular PEDs; however, the majority of the observed PEDs in the current study fell under the serous category.

The vitreomacular interface status has been considered an important risk factor in previous reports. In the literature, eyes with vitreomacular adhesion (VMA) had lower VA than those with PVD; these eyes also required more intensive treatment (14,27). Post hoc analysis of the MONT BLANC and CATT studies showed that there was no significant change in BCVA gains among the VMA, VMT, and RELEASE groups, but eyes with VMA and VMT required an increased number of injections to obtain favorable visual outcomes (22,28). In this study, the most common vitreomacular interface change was VMA. No correlation was observed between vitreomacular interface status at baseline and mean BCVA during the 60-month follow-up. In accordance with the existing literature, eyes with VMA, VMT, and epiretinal membrane required a higher average number of injections during follow-up than eyes with PVD (10 vs. 8 injections), although this was not statistically significant.

HF, another OCT finding, are small, well-defined dots located in the neurosensory retina and within the RPE (29,30). Coscas et al.(31) reported that poor BCVA at baseline was significantly correlated with the continuation of HFs after intravitreal injections. Some studies noted that HFs could be a biomarker of less VA gain, especially if they did not resolve with treatment (29-31). The presence of HF was found to have no effect on VA at 12, 24, and 60 months in this study. This study did not investigate the persistence of HF after injection but rather the relationship between the presence of HF at baseline and short- and long-term visual outcomes. These findings indicate that there is insufficient evidence to conclude that HF has an effect on visual prognosis.

The retrospective design of the study constitutes its primary limitation. Second, the potential effects of different anti-VEGF drugs were not addressed. Moreover, while a qualitative assessment of OCT parameters, including fluid, PED, and HF, was performed, a quantitative analysis of sub-retinal and intraretinal fluid volume, PED, and HF was not conducted. It may be useful to adopt a quantitative assessment approach to quantify the effectiveness of anti-VEGF treatment and the progression of AMD.

Conclusion

This study identified prognostic factors and OCT biomarkers affecting visual outcomes over a 5-year follow-up period in a real-world setting. The results indicated that lower baseline VA, absence of IRF, presence of PED at baseline, and lower macular thickness at baseline were predictive of better VA in the initial years following injections. Similarly, better BCVA at 3 months, absence of intraretinal fluid and the presence of PED, and reduced CMT at 3 months were significant prognostic markers for favorable visual outcomes in the initial 2 years following injections. The findings of our

study indicate that the number of 1st year injections had no discernible effect on either short or long-term visual prognosis. In the present study, as in real-life studies, a decline in VA in patients treated with PRN regimens in the latter years of treatment was also observed. However, the use of favorable prognostic indicators, such as improved BCVA, absence of IRF, and a thinner macula following three loading doses, in conjunction with poor prognostic markers, including better baseline BCVA, absence of PED, and presence of IRF at the initial visit, may prove beneficial in preserving VA, regardless of the number of injections administered. This enables the creation of a personalized visual prognosis. Furthermore, when deciding on retreatment in a PRN regimen, it may be helpful to consider indicators affecting the visual prognosis. These indicators include the presence of IRF and its persistence after loading doses, thick macula persistence at 3 months, and inadequate visual improvement after loading doses. For this purpose, longitudinal studies with follow-up periods exceeding 5 years should be conducted with larger patient populations.

Disclosures

Ethics Committee Approval: This study was approved by the Ankara Training and Research Hospital Ethics Committee (Date:18.08.2021 Number: E-21-687).

Informed Consent: Written informed consent was obtained from all patients.

Conflict of Interest: None declared.

Funding: The author declared that this study has received no financial support.

Use of AI for Writing Assistance: None declared.

Author Contributions: Concept – O.C., N.U., M.A.A.; Design – O.C., G.U., D.H., N.U.; Supervision – O.C., N.U., M.A.A.; Resource – O.C., D.H.; Materials – O.C., G.U., D.H., N.U.; Data Collection and/or Processing – O.C., G.U., N.U.; Analysis and/or Interpretation – O.C., G.U., N.U., M.A.A.; Literature Search – O.C., D.H.; Writing – O.C., G.U., D.H.; Critical Reviews – N.U., M.A.A.

Peer-review: Externally peer-reviewed.

References

1. GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020, trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health 2021;9:e144–60.
2. Özkaya A, Karabaş L, Alagöz C, Alkin Z, Artunay Ö, Böülübaşı S, et al. Real-world outcomes of anti-VEGF treatment for neovascular age-related macular degeneration in Turkey: a multicenter retrospective study, Bosphorus Retina Study Group report no: 1. Turk J Ophthalmol 2018;48:232–7. [\[CrossRef\]](#)

3. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, et al; MARINA Study Group. Ranibizumab for neovascular age-related macular degeneration. *N Engl J Med* 2006;355:1419–31. [\[CrossRef\]](#)
4. Lalwani GA, Rosenfeld PJ, Fung AE, Dubovy SR, Michels S, Feuer W, et al. A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO Study. *Am J Ophthalmol* 2009;148:43–58. [\[CrossRef\]](#)
5. Ying GS, Maguire MG, Daniel E, Ferris FL, Jaffe GJ, Grunwald JE, et al; CATT Research Group. Association of baseline characteristics and early vision response with 2-year vision outcomes in the Comparison of AMD Treatments Trials (CATT). *Ophthalmology* 2015;122:2523–31. [\[CrossRef\]](#)
6. Üney GÖ, Ünlü N, Acar MA, Hazirolan D, Altiparmak UE, Yalnız-Akkaya Z, et al. Role of posterior vitreous detachment on outcome of anti-vascular endothelial growth factor treatment in age-related macular degeneration. *Retina* 2014;34:32–7. [\[CrossRef\]](#)
7. Augsburger M, Sarra GM, Imesch P. Treat and extend versus pro re nata regimens of ranibizumab and aflibercept in neovascular age-related macular degeneration: a comparative study. *Graefes Arch Clin Exp Ophthalmol* 2019;257:1889–95. [\[CrossRef\]](#)
8. Corazza P, D'Alterio FM, Kabbani J, Alam MMR, Mercuri S, Orlans HO, Younis S. Long-term outcomes of intravitreal anti-VEGF therapies in patients affected by neovascular age-related macular degeneration: a real-life study. *BMC Ophthalmol* 2021;21:300. [\[CrossRef\]](#)
9. Ozturk M, Ozkaya A, Karabas L, Alagoz C, Alkin Z, Artunay O, et al; Bosphorus Retina Study Group. Results of anti-VEGF treatment for neovascular AMD in eyes with different baseline visual acuity in Turkish population-based on real life data. *Bosphorus Retina Study Group. Photodiagnosis Photodyn Ther* 2023;42:103640. [\[CrossRef\]](#)
10. Diack C, Schwab D, Cosson V, Buchheit V, Mazer N, Frey N. A baseline score to predict response to ranibizumab treatment in neovascular age-related macular degeneration. *Transl Vis Sci Technol* 2021;10:11. [\[CrossRef\]](#)
11. Singer MA, Awh CC, Sadda S, Freeman WR, Antoszyk AN, Wong P, Tuomi L. HORIZON: an open-label extension trial of ranibizumab for choroidal neovascularization secondary to age-related macular degeneration. *Ophthalmology* 2012;119:1175–83. [\[CrossRef\]](#)
12. Wang H, Barteselli G, Freeman WR, Lee SN, Chhablani J, El-Emam S, Cheng L. Temporal pattern of resolution/recurrence of choroidal neovascularization during bevacizumab therapy for wet age-related macular degeneration. *Int J Ophthalmol* 2013;6:600–5.
13. Ying GS, Maguire MG, Pan W, Grunwald JE, Daniel E, Jaffe GJ, et al; CATT Research Group. Baseline predictors for five-year visual acuity outcomes in the Comparison of AMD Treatment Trials. *Ophthalmol Retina* 2018;2:525–30. [\[CrossRef\]](#)
14. Ashraf M, Souka A, Adelman RA. Age-related macular degeneration: using morphological predictors to modify current treatment protocols. *Acta Ophthalmol* 2018;96:120–33. [\[CrossRef\]](#)
15. Oca Al, Pérez-Sala Á, Pariente A, Ochoa R, Velilla S, Peláez R, et al. Predictive biomarkers of age-related macular degeneration response to anti-VEGF treatment. *J Pers Med* 2021;11:1329. [\[CrossRef\]](#)
16. Waldstein SM, Wright J, Warburton J, Margaron P, Simader C, Schmidt-Erfurth U. Predictive value of retinal morphology for visual acuity outcomes of different ranibizumab treatment regimens for neovascular AMD. *Ophthalmology* 2016;123:60–9. [\[CrossRef\]](#)
17. Granstam E, Westborg I, Barkander A, Börjesson M, Lindahl S, Meszaros E, et al. Reduced occurrence of severe visual impairment after introduction of anti-vascular endothelial growth factor in wet age-related macular degeneration: a population- and register-based study from northern Sweden. *Acta Ophthalmol* 2016;94:646–51. [\[CrossRef\]](#)
18. Rauch R, Weingessel B, Maca SM, Vecsei-Marlovits PV. Time to first treatment: the significance of early treatment of exudative age-related macular degeneration. *Retina* 2012;32(7):1260–4. [\[CrossRef\]](#)
19. Veluswamy B, Lee A, Mirza RG, Gill MK. Correlation of baseline visual acuity with outcomes of treatment with anti-VEGF in neovascular age-related macular degeneration. *Clin Ophthalmol* 2020;14:1565–72. [\[CrossRef\]](#)
20. Hosseini H, Rabina G, Pettenkofer M, Au A, Chehabou I, Heilweil G, et al. Clinical characteristics and visual outcomes of non-resolving subretinal fluid in neovascular AMD despite continuous monthly anti-VEGF injections: a long-term follow-up. *Graefes Arch Clin Exp Ophthalmol* 2021;259:1153–60. [\[CrossRef\]](#)
21. Metrangolo C, Donati S, Mazzola M, Fontanel L, Messina W, D'Alterio G, et al. OCT biomarkers in neovascular age-related macular degeneration: a narrative review. *J Ophthalmol* 2021;2021:9994098. [\[CrossRef\]](#)
22. Guymer RH, Markey CM, McAllister IL, Gillies MC, Hunyor AP, Arnold JJ; FLUID Investigators. Tolerating subretinal fluid in neovascular age-related macular degeneration treated with ranibizumab using a treat-and-extend regimen: FLUID study 24-month results. *Ophthalmology* 2019;126:723–34. [\[CrossRef\]](#)
23. Roh M, Laíns I, Shin HJ, Park DH, Mach S, Vavvas DG, et al. Microperimetry in age-related macular degeneration: association with macular morphology assessed by optical coherence tomography. *Br J Ophthalmol* 2019;103:1769–76. [\[CrossRef\]](#)
24. Fragiotta S, Rossi T, Cutini A, Grenga PL, Vingolo EM. Predictive factors for development of neovascular age-related macular degeneration: a spectral-domain optical coherence tomography study. *Retina* 2018;38:245–52. [\[CrossRef\]](#)

25. Barış ME, Menteş J, Afrashi F, Nalçacı S, Akkın C. Subgroups and features of poor responders to anti-vascular endothelial growth factor treatment in eyes with neovascular age-related macular degeneration. *Turk J Ophthalmol* 2020;50:275–82. [\[CrossRef\]](#)
26. Cheong KX, Teo KYC, Cheung CMG. Influence of pigment epithelial detachment on visual acuity in neovascular age-related macular degeneration. *Surv Ophthalmol* 2021;66:68–97. [\[CrossRef\]](#)
27. Gao M, Liu L, Liang X, Yu Y, Liu X, Liu W. Influence of vitreomacular interface on anti-vascular endothelial growth factor treatment outcomes in neovascular age-related macular degeneration: a MOOSE-compliant meta-analysis. *Medicine (Baltimore)* 2017;96:e9345. [\[CrossRef\]](#)
28. Xie P, Zheng X, Yu Y, Ye X, Hu Z, Yuan D, Liu Q. Vitreomacular adhesion or vitreomacular traction may affect antivascular endothelial growth factor treatment for neovascular age-related macular degeneration. *Br J Ophthalmol* 2017;101:1003–10. [\[CrossRef\]](#)
29. Augustin S, Lam M, Lavalette S, Verschueren A, Blond F, Forster V, et al. Melanophages give rise to hyperreflective foci in AMD, a disease-progression marker. *J Neuroinflammation* 2023;20:28. [\[CrossRef\]](#)
30. Curcio CA, Zanzottera EC, Ach T, Balaratnasingam C, Freund KB. Activated retinal pigment epithelium, an optical coherence tomography biomarker for progression in age-related macular degeneration. *Invest Ophthalmol Vis Sci* 2017;58:BIO211–26.
31. Coscas G, De Benedetto U, Coscas F, Li Calzi CI, Vismara S, Roudot-Thoraval F, et al. Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. *Ophthalmologica* 2013;229:32–7. [\[CrossRef\]](#)

The Role of Botulinum Toxin in Dry Eye Disease and Meibomian Gland Dysfunction Associated with Hemifacial Spasm

 Meryem Altin Ekin

Department of Ophthalmology, Dokuz Eylul University, Faculty of Medicine, Izmir, Türkiye

Abstract

Objectives: To investigate the signs and symptoms of dry eye disease (DED) in patients with hemifacial spasm (HFS) through the evaluation of ocular surface measurements and meibomian gland function, and to assess the effects of botulinum toxin type A (BTX-A) injection on ocular surface health.

Methods: This prospective study included patients with unilateral HFS who underwent BTX-A injection as treatment. Eyes on the same side as the spasm were defined as the HFS group, whereas the contralateral, unaffected eyes were used as controls. Ocular surface assessments included the ocular surface disease index (OSDI) score, Schirmer's I test, tear break-up time (TBUT), corneal surface staining, eyelid margin abnormalities, and meibomian gland function. All evaluations were repeated at 1, 3, and 6 months following BTX-A injection.

Results: Compared to the control group, the HFS group demonstrated significantly higher OSDI scores, corneal surface staining, eyelid margin abnormalities, meibomian gland expression scores, meibography scores, and meibomian gland loss, whereas TBUT and Schirmer's I test values were significantly lower ($p<0.05$). A significant correlation was observed between the severity of HFS and ocular surface dysfunction, including meibomian gland dysfunction (MGD) ($p<0.05$). Following BTX-A injection, ocular surface parameters showed significant improvement at 1 month ($p<0.05$) and 3 months ($p<0.05$) compared to pre-injection values.

Conclusion: We found an association between HFS and DED, which was correlated with the severity of HFS. In addition, BTX-A injection led to a temporary improvement in dry eye signs and symptoms, including MGD.

Keywords: Botulinum toxin, dry eye, hemifacial spasm, meibomian gland, ocular surface

Introduction

Hemifacial spasm (HFS) refers to a chronic condition involving unilateral, involuntary facial muscle contractions due to irritation or compression of the facial nerve. Although HFS is primarily known as a motor disorder, emerging evidence suggests a significant association with ocular surface dysfunc-

tion. Patients with HFS frequently report symptoms suggestive of dry eye disease (DED), such as irritation, tearing, and eye discomfort, likely due to irregular blinking patterns and persistent orbicularis oculi muscle hyperactivity (1).

Previous research on ocular surface alterations in movement disorders has primarily focused on blepharospasm,

How to cite this article: Altin Ekin M. The Role of Botulinum Toxin in Dry Eye Disease and Meibomian Gland Dysfunction Associated with Hemifacial Spasm. Beyoglu Eye J 2025; 10(4): 235-243.

Address for correspondence: Meryem Altin Ekin, MD. Department of Ophthalmology, Dokuz Eylul University, Faculty of Medicine, Izmir, Türkiye

Phone: +90 533 540 64 98 **E-mail:** meryem.altinekin@deu.edu.tr

Submitted Date: April 18, 2025 **Revised Date:** November 15, 2025 **Accepted Date:** December 07, 2025 **Available Online Date:** January 19, 2026

Beyoglu Eye Training and Research Hospital - Available online at www.beyoglueye.com

OPEN ACCESS This is an open access article under the CC BY-NC license (<http://creativecommons.org/licenses/by-nc/4.0/>).

which shares similar clinical features with HFS, including increased blink frequency and forceful eyelid closure (2,3). However, data specific to HFS remain limited (4,5). In particular, the role of meibomian gland dysfunction (MGD) in the pathogenesis of DED among patients with HFS remains poorly understood (4,5).

Botulinum toxin type A (BTX-A) is the mainstay treatment for HFS, offering temporary relief from muscle spasms by inhibiting acetylcholine release at neuromuscular junctions (1). While its efficacy in reducing motor symptoms is well documented, evidence regarding its effects on the ocular surface and meibomian gland function has yielded inconsistent results (3,6,7).

This research was designed to provide a comprehensive evaluation of DED among HFS patients, incorporating both patient-reported outcomes (ocular surface disease index (OSDI)) and clinical findings (tear break-up time (TBUT), Schirmer's I test, corneal staining, and meibomian gland assessment. Furthermore, we investigated the short- and mid-term effects of periocular BTX-A injections on these parameters at 1-, 3-, and 6-month follow-up visits. By comparing findings from affected and contralateral eyes, this study also sought to clarify the localized impact of HFS on ocular surface homeostasis.

Methods

This prospective, cross-sectional observational study was carried out in the ophthalmology department of Dokuz Eylül University Hospital and included patients diagnosed with unilateral HFS. HFS was diagnosed based on standard criteria and confirmed by a neurology specialist (8). Exclusion criteria included the presence of ocular surface diseases other than DED, neurologic disorders other than HFS, eyelid mal-position, punctal occlusion, glaucoma, contact lens wear, systemic comorbidities, prior ocular surgeries or trauma, medication use affecting tear production, and refractive errors $>\pm 4.00$ diopters. The eye on the same side as the HFS was designated as the affected (homolateral) eye, whereas the non-affected (contralateral) eye served as an internal control. The study adhered to the principles of the Declaration of Helsinki and was approved by the Ethics Committee of

Dokuz Eylül University (approval number: 2024/08-19). Informed consent was obtained in writing from all participants before study enrollment.

Demographic and clinical data were recorded for all patients. HFS severity was graded on a 4-point scale (0–4) based on the rating system established by Lee et al. (9) (Table 1) A single examiner performed a standardized ophthalmologic evaluation on all subjects, including both the HFS-affected and contralateral eyes, following completion of the OSDI questionnaire. The assessment protocol included Schirmer's I test, TBUT, corneal surface staining, eyelid margin grading, meibomian gland expression evaluation, and imaging with infrared meibography. Data from both eyes of each participant were included in the analysis. OSDI is a widely used, validated questionnaire comprising 12 items that assess the frequency and severity of symptoms associated with DED (10). Each item is scored on a scale from 0 (none of the time) to 4 (all of the time). The total score is determined by the following equation: (Sum of scores for all answered questions $\times 100$)/(total number of questions answered $\times 4$), with higher scores indicating more severe symptoms. Schirmer's I test was performed under non-anesthetized conditions using a standardized strip positioned at the outer one-third of the lower eyelid to measure tear production. The strip remained in place for 5 min, and the length of the wetted area (in millimeters) was recorded. TBUT was measured after using a minimally moistened fluorescein strip after instilling fluorescein dye into the conjunctival sac. After several blinks to evenly disperse the dye, the duration between the last complete blink and the first visible corneal dry spot was measured using cobalt blue illumination. Corneal fluorescein staining was used to evaluate superficial punctate keratopathy (11). The cornea was divided into five regions, each graded on a scale from 0 to 3, where 0 indicated no staining, 1 represented punctate staining, 2 denoted linear or ball staining, and 3 corresponded to coalesced staining. Eyelid margin abnormalities were graded on a 0–4 scale based on specific features, including lid margin irregularity, plugging of the meibomian gland orifices, vascular engorgement, and mucocutaneous junction displacement (12). Digital pressure was applied to the nasal and central regions of both

Table 1. Grading system for hemifacial spasm

Grade	Detailed description
1	Localized spasm around the periocular area
2	Involuntary movement spreads to other parts of the ipsilateral face and affects other muscle groups: The orbicularis oris, zygomaticus, frontalis, and platysma muscles
3	Interference with vision because of frequent tonic spasms
4	Disfiguring asymmetry: Continuous contraction of the orbicularis oculi muscles affects the opening of the eye

the upper and lower eyelids to evaluate meibomian gland expression. Expression quality was graded as follows: Grade 0 indicated clear meibum easily expressed, Grade 1 indicated cloudy meibum expressed with mild pressure, Grade 2 referred to cloudy meibum requiring moderate pressure, and Grade 3 indicated no expression despite firm pressure (13). Meibomian gland loss was assessed through infrared meibography and calculated as the percentage of gland dropout relative to the total area of the tarsal plate (14). Gland loss was scored using a five-grade meiboscore system: Grade 0 represented no gland loss, Grade 1 indicated <25% loss, Grade 2 indicated 25–50% loss, Grade 3 indicated 50–75% loss, and Grade 4 indicated more than 75% gland loss. The overall meiboscore was obtained by adding the individual scores of the upper and lower eyelids.

DED was diagnosed by the DEWS II guidelines, which require an OSDI score of ≥ 13 and at least one abnormal clinical test result, including Schirmer's I test (≤ 5 mm), positive corneal staining, or TBUT <10 s. (15) Patients with HFS were treated with onabotulinumtoxin A (100U, Botox, Allergan, Irvine, CA, USA) injections prepared and administered by a single clinician (Fig. 1). Each vial was reconstituted using 2 mL of preservative-free sterile saline, which produced a final concentration of 5 units/0.1 mL. The injections were performed using a 30-gauge needle at four sites in the medial and lateral pretarsal orbicularis oculi muscle and into the corrugator and procerus muscles between the eyebrows. An additional injection targeted the zygomaticus major muscle and was administered approximately 1–2 cm below the zygomatic arch along an anatomical line from the zygomatic bone to the oral commissure. A standardized total dose of 20 units of onabotulinumtoxin A was administered to the affected side in all patients. The dose was distributed as follows: 2.5 units were injected into both the medial and lateral portions of the pretarsal orbicularis oculi (totaling 5 units per eye for the periocular region), 5 units into the corrugator muscle, 5 units into the procerus muscle, and 5 units into the zygomaticus major muscle. This dosing regimen was consistent for all study participants and was not adjusted based on individual patient factors. All patients underwent ophthalmic examinations at baseline and 1, 3, and 6 months following BTX-A injections. No topical or systemic treatments for DED were administered to any patients with HFS

throughout the study period.

Data analysis was performed using the Statistical Package for the Social Sciences version 25.0 (IBM Corp., Armonk, NY, USA). Continuous variables were presented as mean \pm standard deviation, and categorical variables were reported as frequencies and percentages. The Shapiro–Wilk test was applied to assess the normality of the data distribution. Independent samples t-tests were utilized for comparing continuous variables between different groups, and paired samples t-tests were conducted for within-group analyses. Chi-square tests were conducted for comparisons involving categorical data. Pearson's correlation coefficient was applied to quantify associations between continuous variables. Statistical significance was defined as a $p < 0.05$. Post hoc power analysis performed with G*Power (v3.1.9.2) indicated that the study had more than 80% power to detect significant effects at the 0.05 alpha level.

Results

In this study, the 27 eyes affected by HFS were included in the HFS group, and the contralateral unaffected eyes of the same patients were used as the control group. Sixteen patients were female, 11 were male, and the mean age was 62.1 ± 10.2 years. DED was diagnosed in 17 (44.4%) patients with HFS. The clinical characteristics and ocular surface measurements for the control and HFS groups are presented in Table 2.

In ocular surface assessments, the HFS group demonstrated significantly higher OSDI scores ($p < 0.001$), shorter TBUT values ($p = 0.001$), reduced Schirmer's I test results ($p < 0.001$), and increased corneal surface staining scores ($p < 0.001$) compared to the control group. Eyelid margin abnormality scores were also significantly more severe in the HFS group ($p < 0.001$). Moreover, irregular eyelid margins ($p = 0.013$), vascular engorgement ($p = 0.002$), plugged meibomian gland orifices ($p = 0.001$), and mucocutaneous junction displacement ($p = 0.033$) were all significantly more prevalent in the HFS group than in controls. The HFS group exhibited significantly greater impairment in meibomian gland function compared to controls. This was reflected in elevated meibomian gland expression scores (upper, lower, and total; all $p < 0.001$), increased meibography scores (upper, lower, and total; all $p < 0.001$), and more extensive gland loss areas (upper, lower, and total; all $p < 0.001$).

Figure 1. A patient with right-sided hemifacial spasm before (a) and after (b) botulinum toxin injections. Improved symmetry in eye opening is observed following treatment.

Table 2. Comparison of the clinical characteristics and ocular surface parameters of study groups

	Baseline		p	Post-BTX-A injection		
	Control (n=27)	Hemifacial spasm (n=27)		1 m (n=27)	3 m (n=27)	6 m (n=27)
Age (y)	62.1±10.2	62.1±10.2	1.0	62.1±10.2	62.1±10.2	62.1±10.2
Gender (Female/Male)	16/11	16/11	1.0	16/11	16/11	16/11
Body mass index (kg/m ²)	26.3±3.8	26.3±3.8	1.0	26.3±3.8	26.3±3.8	26.3±3.8
Laterality (%)						
Right eye	17 (63)	10 (37)	0.057	10 (37)	10 (37)	10 (37)
Left eye	10 (37)	17 (63)		17 (63)	17 (63)	17 (63)
DED, n (%)	0 (0)	12 (44.4)	<0.001	3 (11.1)	5 (18.5)	8 (29.6)
OSDI score	15.3±8.3	27.1±12.6	<0.001	18.7±10.5	20.9±11.8	23.5±12.3
Tear break-up time (s)	9.33±5.7	5.48±3.1	0.001	8.70±5.3	7.85±4.9	6.44±4.6
Schirmer's I test (mm)	12.48±6.2	7.2±3.5	<0.001	10.5±4.9	9.63±4.6	8.7±4.3
Corneal surface staining score	1.9±1.5	7.5±3.7	<0.001	4.7±2.3	4.2±1.8	6.3±2.6
Eyelid margin abnormality score (%)	0.5±0.6	1.9±1.3	<0.001	1.1±0.8	1.3±0.9	1.6±1.1
Irregular eyelid margin	3 (11.1)	11 (40.7)	0.013	4 (14.8)	6 (22.2)	9 (33.3)
Vascular engorgement	2 (7.4)	12 (44.4)	0.002	4 (14.8)	4 (14.8)	8 (29.6)
Plugged meibomian gland orifices	3 (11.1)	14 (51.8)	0.001	3 (11.1)	5 (18.5)	11 (40.7)
Shift in the mucocutaneous junction	4 (14.8)	11 (40.7)	0.033	5 (18.5)	8 (29.6)	9 (33.3)
Meibomian expression						
Upper eyelid	0.7±0.7	1.9±1.3	<0.001	1.2±0.8	1.3±0.8	1.7±0.9
Lower eyelid	0.6±0.5	1.7±1.1	<0.001	1.0±0.9	1.1±0.9	1.6±0.9
Total	1.3±0.8	3.7±1.9	<0.001	2.2±1.5	2.5±1.6	3.3±1.8
Meibography score						
Upper eyelid	1.1±0.6	2.1±0.9	<0.001	1.4±0.8	1.5±0.8	1.7±0.8
Lower eyelid	0.9±0.5	1.9±0.9	<0.001	1.2±0.8	1.3±0.8	1.6±0.8
Total	2.1±0.9	4.1±1.2	<0.001	2.6±1.0	2.8±1.0	3.3±1.1
Area of meibomian gland loss						
Upper eyelid	17.8±7.1	40.5±19.4	<0.001	24.7±15.1	29.3±16.9	35.7±14.4
Lower eyelid	19.4±7.5	42.8±20.1	<0.001	30.3±17.1	32.4±17.9	37.6±18.1
Total	37.3±17.5	83.3±26.9	<0.001	55.1±22.3	61.7±23.4	73.3±25.9

BTX-A: Botulinum toxin A; DED: Dry eye disease; OSDI: Ocular surface disease index.

As shown in Table 3, correlation analysis was utilized to investigate the link between HFS severity and ocular surface indicators, including MGD parameters. There were significant positive correlations between the severity of HFS and several ocular surface parameters, including OSDI ($r=0.506$, $p=0.001$), corneal surface staining ($r=0.537$, $p<0.001$), meibomian gland expression (upper: $r=0.543$, $p<0.001$; lower: $r=0.509$, $p=0.001$; total: $r=0.584$, $p<0.001$), meibography scores (upper: $r=0.427$, $p=0.016$; lower: $r=0.489$, $p=0.001$; total: $r=0.463$, $p=0.002$), and the area of meibomian gland

loss (upper: $r=0.552$, $p<0.001$; lower: $r=0.506$, $p<0.001$; total: $r=0.538$, $p<0.001$). In contrast, significant negative correlations were observed between HFS severity and TBUT ($r=-0.454$, $p=0.008$) as well as Schirmer's I test scores ($r=-0.412$, $p=0.012$).

A detailed comparison of ocular surface measurements and MGD in eyes with HFS at baseline and at 1, 3, and 6 months after BTX-A injection is presented in Table 4 and Figure 2. Among patients with HFS, OSDI, TBUT, Schirmer's I test, eyelid margin abnormality score, meibography scores

Table 3. The relationship between the hemifacial spasm severity and ocular surface parameters

	Hemifacial spasm severity	
	r	p
OSDI score	0.506	0.001
Tear break-up time (s)	-0.454	0.008
Schirmer's I test (mm)	-0.412	0.012
Cornea surface staining score	0.537	<0.001
Eyelid margin abnormality score	0.385	0.098
Meibomian expression		
Upper eyelid	0.543	<0.001
Lower eyelid	0.509	0.001
Total	0.584	<0.001
Meibography score		
Upper eyelid	0.427	0.016
Lower eyelid	0.489	0.001
Total	0.463	0.002
Area of meibomian gland loss		
Upper eyelid	0.552	<0.001
Lower eyelid	0.506	<0.001
Total	0.538	<0.001

OSDI: Ocular surface disease index.

(upper, lower, and total), and the extent of meibomian gland loss (upper, lower, and total) showed significant improvement at 1 ($p<0.05$) and 3 months ($p<0.05$) after BTX-A injection compared to pre-injection values. However, these improvements were no longer statistically significant 6 months after injection ($p>0.05$). Two (7.4%) eyes in our study developed a minor hematoma, which gradually resolved within 2 weeks after the injection.

Discussion

Our findings indicate a significant association between HFS and signs and symptoms of DED. A positive correlation was observed between the clinical severity of HFS and the degree of ocular surface alterations, including MGD. In addition, periocular administration of BTX-A alleviated the motor symptoms of HFS and resulted in significant improvements in ocular surface health.

In our study, the prevalence of DED among eyes affected by HFS was 44.4%. This is in line with findings by Raj et al.,(16) who reported that 8 out of 17 patients with HFS (47.06%) were diagnosed with DED, and by Pellegrini et al.,(5) who documented a prevalence of 42% (5,16). In

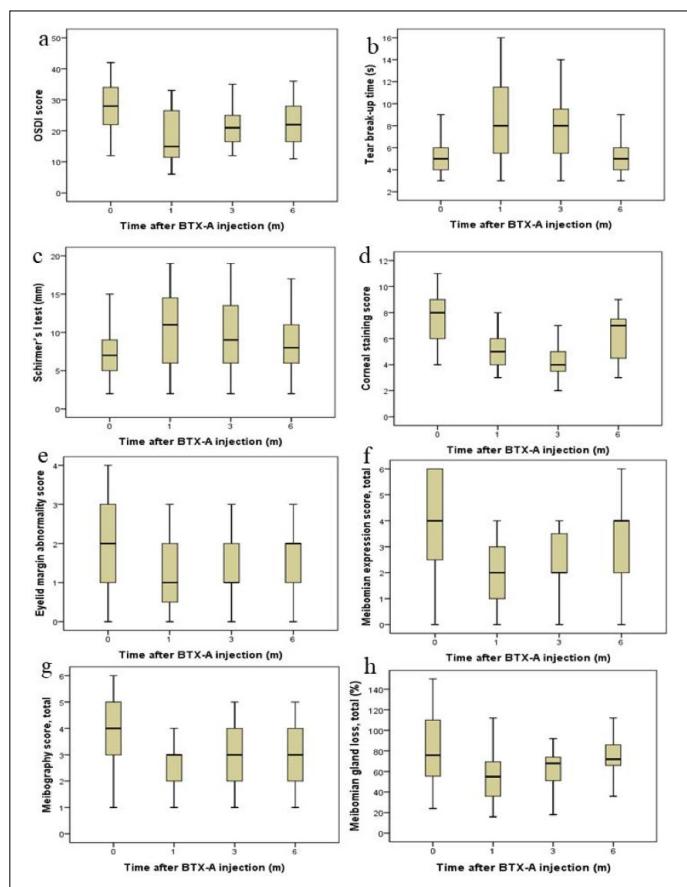
contrast, Jariyokasol et al.(4) reported a DED prevalence of 37.93% in HFS-affected eyes, which was not statistically significantly different from that in the contralateral eyes (27.6%), despite a nearly 10% absolute difference that may be of clinical relevance (4). Differences in diagnostic criteria may explain the lower prevalence reported by Jariyokasol et al. (4) At the same time, their study employed the Asia Dry Eye Society criteria. Our study and those by Raj et al. (16) and Pellegrini et al. (5) utilized the DEWS criteria, which may be more sensitive in detecting DED.

Patients with HFS had significantly higher OSDI and corneal staining scores and significantly lower Schirmer's I test values and TBUT compared to their unaffected fellow eyes. In addition to prior research, our study presents a novel finding that eyes with HFS exhibited a higher incidence of MGD than the controls (4,5). A significant association was also observed between higher HFS severity scores and more significant impairment in subjective and objective dry eye parameters. While comparisons can be drawn between our results in HFS patients and previous findings in blepharospasm due to shared clinical characteristics, it is critical to recognize that the available literature on the effect of blepharospasm on DED lacks consistency and is marked by substantial variability (3,6,7).

Irregular and forceful blinking patterns in HFS may contribute to the pathogenesis of DED by disrupting tear film stability and reducing adequate lubrication between the ocular surfaces (17). Inadequate separation and lubrication of the eyelid and ocular surfaces can lead to repeated microtrauma during eyelid movements, particularly of the upper lid (17). This microtrauma may trigger an inflammatory cascade through the mechanism of the Lewis triple response (18). The resulting tear hyperosmolarity and mechanical stress on the epithelium may further stimulate the release of proinflammatory cytokines such as tumor necrosis factor-alpha and interleukin-1 at the ocular surface (19).

The meibomian glands are essential in preserving the homeostasis of the tear film's lipid layer, and any dysfunction may lead to increased tear evaporation and the subsequent development of DED. Our impaired meibomian gland function findings in HFS patients may be explained by morphological and functional disruptions secondary to sustained eyelid muscle spasms. Lin et al. (20) demonstrated that repetitive forced blinking and sustained spasms in blepharospasm patients were associated with reduced acinar area, lower meibum reflectivity, and increased acinar irregularity, likely reflecting diminished lipid storage. In addition, impaired Riolan muscle function may reduce gland orifice diameter, compromising lipid secretion.

Table 4. Comparison of measurements during the 6-month follow-up in the hemifacial spasm group


	Hemifacial spasm					
	Pre-injection versus			1 month versus		3 month versus
	1 month	3 month	6 month	3 month	6 month	6 month
DED, n (%)	0.006	0.040	0.259	0.443	0.091	0.339
OSDI score	0.009	0.028	0.207	0.393	0.086	0.268
Tear break-up time (s)	0.014	0.034	0.314	0.554	0.102	0.228
Schirmer's I test (mm)	0.007	0.036	0.166	0.497	0.153	0.442
Cornea surface staining score	0.002	<0.001	0.152	0.396	0.022	0.001
Eyelid margin abnormality score	0.012	0.042	0.320	0.526	0.106	0.281
Irregular eyelid margin	0.033	0.143	0.573	0.483	0.111	0.362
Vascular engorgement	0.017	0.017	0.259	1.0	0.190	0.190
Plugged meibomian gland orifices	0.001	0.010	0.412	0.443	0.013	0.074
Shift in the mucocutaneous junction	0.074	0.392	0.573	0.339	0.214	0.769
Meibomian expression						
Upper eyelid	0.004	0.015	0.464	0.476	0.006	0.027
Lower eyelid	0.001	0.010	0.326	0.344	0.004	0.032
Total	0.001	0.008	0.285	0.307	0.001	0.014
Meibography score						
Upper eyelid	0.002	0.011	0.103	0.522	0.188	0.465
Lower eyelid	0.005	0.008	0.056	0.413	0.159	0.407
Total	0.001	0.001	0.084	0.417	0.161	0.384
Area of meibomian gland loss						
Upper eyelid	0.001	0.028	0.309	0.297	0.008	0.140
Lower eyelid	<0.001	0.001	0.084	0.255	0.001	0.062
Total	<0.001	0.001	0.128	0.267	0.004	0.106

DED: Dry eye disease; OSDI: Ocular surface disease index.

The present study showed a significant improvement in OSDI scores, corneal surface staining, meibum expressibility, meibography scores, and meibomian gland loss 1 month following periocular BTX-A injection. Six months post-treatment, the observed benefits were no longer statistically significant, consistent with the temporary duration of BTX-A's neuromuscular blockade. Horwath-Winter J et al. (21) investigated the effects of standard periorbital BTX-A injections on dry eye symptoms over 3 months in patients with essential blepharospasm. According to the study, Schirmer test scores decreased significantly over time, with notable reductions recorded at 1 week, 1 month, and 3 months after the injection (21). This difference in Schirmer's results might be explained by the type of BTX-A used in their study. Specifically, abobotulinumtoxinA, known for its higher diffusion rate compared to onabotulinumtoxinA, may have caused a more widespread distribution of the toxin to the lacrimal glands,

leading to a reduction in tear production as observed in the Schirmer test (22). Although Jariyakasol et al.(4) reported no statistically significant differences in tear function parameters – including basal secretion, reflex tearing, and delayed clearance – between HFS-affected and unaffected eyes based on fluorescein clearance testing, they observed higher Oxford scheme grades in the affected eyes, suggesting potential HFS-related epithelial compromise (4). BTX-A may impact tear dynamics through multiple pathways, including reduced lacrimal gland output, altered lipid layer composition, and changes in tear volume and film stability (23). These effects are likely modulated by factors such as the concentration and dose of BTX-A, the injection site, technique, and the extent of its diffusion into surrounding tissues.

Various oral medications have been investigated for managing HFS, including anticonvulsants, baclofen, anticholinergics, and haloperidol (1). However, limited reliable evidence

Figure 2. Ocular surface parameters before and at 1, 3, and 6 months after botulinum toxin injection: (a) Ocular surface disease index score; (b) tear break-up time; (c) Schirmer's I test; (d) corneal staining score; (e) eyelid margin abnormality score; (f) total meibomian gland expression score; (g) total meibography score; (h) total area of meibomian gland loss.

supports their efficacy, and treatment is often accompanied by undesirable side effects such as sedation and fatigue (1). Botulinum toxin has emerged as the most effective therapeutic intervention for HFS. The transient improvements observed in ocular surface measurements and meibomian gland function following BTX-A injections in patients with HFS may be attributed to several interconnected mechanisms. These include reducing involuntary muscle contractions, decreasing blink amplitude and frequency, prolonged ocular surface exposure, and reduced tear clearance (24). Gameiro et al. (24) demonstrated that BTX-A significantly decreased blink frequency, amplitude, and maximal eyelid closure velocity. Reduced blinking frequency may also lead to prolonged tear residence time on the ocular surface. As Sahlin et al. (25) have shown, each blink clears a measurable volume of tears, and decreased blinking may enhance tear retention, explaining the improved Schirmer's test results in our cohort. On the other hand, reports by Horwath-Winter et al.(21) and Dutton et al.(26) underscore a paradoxical

reduction in tear secretion and increased ocular staining post-BTX-A, likely due to autonomic suppression of lacrimal gland function, particularly when the toxin is delivered laterally in the upper eyelid.

Our study demonstrated a favorable safety profile, with hematoma being the only complication in just 7.4% of patients. Unlike our findings, prior investigations have reported a broader range of complications, including visual disturbances, epiphora, lagophthalmos, diplopia, and ptosis (27). This relatively low complication rate may be attributed to using the pretarsal injection technique for administering BTX-A to the orbicularis oculi muscle rather than the preseptal approach. This improved performance is likely due to the functional role of the pretarsal orbicularis oculi, which is primarily responsible for involuntary blinking. In contrast, the preseptal portion facilitates voluntary, forceful eyelid closure (28,29). Furthermore, anatomical studies have shown that the pretarsal region contains more skeletal muscle fibers and greater neuronal innervation density per surface area than the preseptal region (28). The muscle fiber composition – predominantly short, type II fibers – may also promote more uniform diffusion of BTX-A across neuromuscular junctions, even at lower doses, thereby enhancing therapeutic efficiency while minimizing systemic exposure (28,30,31).

There are several limitations in this study that should be considered. The generalizability of the results to other, larger, or more diverse populations may be limited by the relatively small sample size and the single-center nature of the study. However, given the HFS's rarity, this study's sample size is relatively robust compared to previous research. Second, while using the contralateral eye as an internal control helps mitigate inter-individual variability, subtle bilateral changes or sympathetic effects may have influenced the results. Third, the cross-sectional design of the study restricts our ability to draw definitive conclusions regarding the causal relationship between HFS severity and ocular surface alterations or the long-term efficacy of BTX-A treatment. Fourth, we did not evaluate tear osmolarity, cytokine profiles, or goblet cell density, which might have provided additional mechanistic insight into the inflammatory and tear film-related changes in HFS patients. One of our study's strengths lies in using the contralateral, non-affected eyes as internal controls, which allowed for effective control of inter-individual variability and potential confounding factors. Variables known to influence dry eye, such as age, gender, race, environmental exposure, and smoking status, were inherently matched between the study and control eyes. An additional strength of the study is its focus on assessing how the clinical severity of HFS correlates with various ocular surface measures.

Conclusion

Our findings indicate that patients with HFS exhibit more severe ocular surface damage, which worsens with increasing disease severity. MGD is a contributing factor to the development of DED in this population. Our findings further suggest that BTX-A injections benefit tear film stability and meibomian gland function, offering therapeutic value beyond motor symptom relief.

Disclosures

Ethics Committee Approval: This study was approved by the Dokuz Eylul University Ethics Committee (Date: 15.08.2024 Number: 2024/08-19).

Informed Consent: Written informed consent was obtained from all patients.

Conflict of Interest: None declared.

Funding: The author declared that this study has received no financial support.

Use of AI for Writing Assistance: None declared.

Peer-review: Externally peer-reviewed.

References

1. Tambasco N, Filidei M, Nigro P, Parnetti L, Simoni S. Botulinum toxin for the treatment of hemifacial spasm: An update on clinical studies. *Toxins (Basel)* 2021;13:881. [\[CrossRef\]](#)
2. Girard BC, Levy P. Dry eye syndrome in benign essential blepharospasm. *J Fr Ophtalmol* 2019;42:1062–7. [\[CrossRef\]](#)
3. Kocabeyoglu S, Taylan Sekeroglu H, Mocan MC, Muz E, Irkec M, Sanac AS. Ocular surface alterations in blepharospasm patients treated with botulinum toxin A injection. *Eur J Ophtalmol* 2014;24:830–4. [\[CrossRef\]](#)
4. Jariyakosol S, Uthaithammarat L, Chatwichaikul N, Kasetsuwan N, Chongpison Y. Dry eye disease in hemifacial spasm patients treated with botulinum toxin type A. *Clin Ophtalmol* 2021;15:1775–82. [\[CrossRef\]](#)
5. Pellegrini M, Schiavi C, Taroni L, Sebastiani S, Bernabei F, Roda M, et al. Ocular surface status in patients with hemifacial spasm under long-lasting treatment with botulinum A toxin: A comparative fellow eye study. *Indian J Ophtalmol* 2019;67:1405–9. [\[CrossRef\]](#)
6. Sawaed A, Friedrich SN, Farhan A, Nassar A, Hamed M, Hartstein M, et al. The effect of botulinum neurotoxin A injections on meibomian glands and dry eye. *Ocul Surf* 2025;35:25–30. [\[CrossRef\]](#)
7. Price J, O'Day J. A comparative study of tear secretion in blepharospasm and hemifacial spasm patients treated with botulinum toxin. *J Clin Neuroophtalmol* 1933;13:67–71.
8. Lefaucheur J-P, Daamer NB, Sangla S, Le Guerin C. Diagnosis of primary hemifacial spasm. *Neurochirurgie* 2018;64:82–6. [\[CrossRef\]](#)
9. Lee JA, Jo KW, Kong DS, Park K. Using the new clinical grading scale for quantification of the severity of hemifacial spasm: correlations with a quality of life scale. *Stereotact Funct Neurosurg* 2012;90:16–19. [\[CrossRef\]](#)
10. Walt JG, Rowe MM, Stern KL. Evaluating the functional impact of dry eye: The ocular surface disease index. *Drug Inf J* 1997;31:1436.
11. Sall K, Pucker AD. Validation of a modified National Eye Institute grading scale for corneal fluorescein staining. *Clin Ophtalmol* 2023;17:757–67. [\[CrossRef\]](#)
12. Tomlinson A, Bron AJ, Korb DR, Amano S, Paugh JR, Pearce EI, et al. The international workshop on meibomian gland dysfunction: report of the diagnosis subcommittee. *Invest Ophtalmol Vis Sci* 2011;52:2006–49. [\[CrossRef\]](#)
13. Shimazaki J, Goto E, Ono M, Shimmura S, Tsubota K. Meibomian gland dysfunction in patients with Sjögren syndrome. *Ophtalmology* 1998;105:1485–8. [\[CrossRef\]](#)
14. Pult H, Riede-Pult B. Comparison of subjective grading and objective assessment in meibography. *Cont Lens Anterior Eye* 2013;36:22–7. [\[CrossRef\]](#)
15. Craig JP, Nichols KK, Akpek EK, Caffery B, Dua HS, Joo CK, et al. TFOS DEVS II definition and classification report. *Ocul Surf* 2017;15:276–83. [\[CrossRef\]](#)
16. Raj A, Arya SK, Deswal J, Bamotra RK. Five-year retrospective review of cases with benign essential blepharospasm and hemifacial spasm presenting in a tertiary eye care center in North India. *Semin Ophtalmol* 2017;32:371–6. [\[CrossRef\]](#)
17. Korb DR, Herman JP, Blackie JA, Scaffidi RC, Greiner JV, Exford JM, et al. Prevalence of lid wiper epitheliopathy in subjects with dry eye signs and symptoms. *Cornea* 2010;29:377–83. [\[CrossRef\]](#)
18. Lewis T. Vascular reactions of the skin to injury. Part II. The liberation of a histamine-like substance in injured skin, the underlying cause of factitious urticaria and of wheals produced by burning, and observations upon the nervous control of certain skin reactions. *Heart* 1924;11:209.
19. Uchino E, Sonoda S, Nakao K, Sakamoto T. Alteration of tear cytokine balance by eye closure: analysis by multicytokine assay. *Graefes Arch Clin Exp Ophtalmol* 2006;244:747–9. [\[CrossRef\]](#)
20. Lin T, Gong L. In vivo confocal microscopy of meibomian glands in primary blepharospasm. *Medicine* 2016;95:e0916. [\[CrossRef\]](#)
21. Horwath-Winter J, Bergloeff J, Floegel I, Haller-Schober E-M, Schmutz O. Botulinum toxin A treatment in patients suffering from blepharospasm and dry eye. *Br J Ophtalmol* 2003;87:54–6. [\[CrossRef\]](#)
22. Kerscher M, Roll S, Becker A, Wigger-Alberti W. Comparison of the spread of three botulinum toxin type A preparations. *Arch Dermatol Res* 2012;304:155–61. [\[CrossRef\]](#)
23. Ho R-W, Fang P-C, Chang C-H, Liu Y-P, Kuo M-T. A review of periocular botulinum neurotoxin on the tear film homeostasis and the ocular surface change. *Toxins (Basel)* 2019;11:66. [\[CrossRef\]](#)
24. Gameiro GR, Osaki MH, Yabumoto C, Osaki T, Garcia DM,

Belfort R Jr, et al. Blinking parameters do not normalize after botulinum toxin therapy in blepharospasm and hemifacial spasm patients. *J Neuroophthalmol* 2023;43:563–8. [\[CrossRef\]](#)

25. Sahlin S, Chen E. Gravity, blink rate, and lacrimal drainage capacity. *Am J Ophthalmol* 1997;124:758–64. [\[CrossRef\]](#)

26. Dutton JJ, Buckley EG. Long-term results and complications of botulinum A toxin in the treatment of blepharospasm. *Ophthalmology* 1988;95:1529–34.

27. Rayess YA, Awaida CJ, Jabbour SF, Ballan AS, Sleilati FH, Abou Zeid SM, et al. Botulinum toxin for benign essential blepharospasm: A systemic review and an algorithmic approach. *Rev Neurol (Paris)* 2021;177:107–14. [\[CrossRef\]](#)

28. Costin BR, Plesec TP, Kopplin LJ, Chundury RV, McBride JM, Levine MR, et al. Regional variations in orbicularis oculi histology. *Ophthalmic Plast Reconstr Surg* 2015;31:325–7.

29. Gordon G. Observations upon the movements of the eyelids. *Br J Ophthalmol* 1951;35:339–51. [\[CrossRef\]](#)

30. Lander T, Wirtschafter JD, McLoon LK. Orbicularis oculi muscle fibers are relatively short and heterogeneous in length. *Invest Ophthalmol Vis Sci* 1996;37:1732–9.

31. McLoon LK, Wirtschafter JD. Regional differences in the orbicularis oculi muscle: conservation between species. *J Neurol Sci* 1991;104:197–202. [\[CrossRef\]](#)

A Novel Multimodal Large Language Model for Interpreting Image-Based Ophthalmology Case Questions: Comparative Analysis of Multiple-Choice and Open-Ended Response

Pelin Kiyat, Hazan Gul Kahraman

Department of Ophthalmology, Izmir Democracy University, Buca Seyfi Demirsoy Training and Research Hospital, Izmir, Türkiye

Abstract

Objectives: The objective of the study is to evaluate the performance of Claude 3.5 Sonnet, a novel multimodal large language model, in interpreting image-based ophthalmology case questions.

Methods: A total of 174 image-based ophthalmology questions from a comprehensive ophthalmology education platform were analyzed by Claude 3.5 Sonnet. Each question was presented in both multiple-choice and open-ended formats. Questions were categorized into six subspecialties: Retina and uveitis; external eye and cornea; orbit and oculoplastics; neuroophthalmology; glaucoma and cataract; and strabismus, pediatric ophthalmology, and genetics. Performance was evaluated by two board-certified ophthalmologists.

Results: Claude 3.5 Sonnet demonstrated an overall accuracy rate of 89.65% in multiple-choice questions and a comparable 87.93% in open-ended questions, with no statistically significant difference between formats ($p=0.72$). Performance showed slight variations among subspecialties, with the highest accuracy in external eye and cornea cases (95.65% in both formats) and lower accuracy in strabismus, pediatric ophthalmology, and genetics (87.50% in multiple-choice and 84.38% in open-ended).

Conclusion: Claude 3.5 Sonnet showed strong capabilities in interpreting image-based ophthalmology questions across all subspecialties, with consistent performance between different question formats. These findings suggest potential applications in ophthalmology education and board examination preparation; however, validation of its utility in real-world clinical scenarios needs further evaluation.

Keywords: Artificial intelligence, Claude 3.5 Sonnet, ophthalmology board examinations

Introduction

Artificial intelligence (AI) has begun to play a pivotal role in the field of medicine, with remarkable improvements recently, especially the development of large language models (LLMs) (1,2). LLMs are defined as a type of generative AI that uses conversation-based technology and allows users

to receive contextually appropriate textual responses to their questions (3). A recent innovation in LLM technology is the addition of image interpretation capabilities. These multimodal LLMs, also referred to as vision-language models (VLMs), have the potential to lead a new era in medicine by processing and interpreting both visual and textual con-

How to cite this article: Kiyat P, Kahraman HG. A Novel Multimodal Large Language Model for Interpreting Image-Based Ophthalmology Case Questions: Comparative Analysis of Multiple-Choice and Open-Ended Response. Beyoglu Eye J 2025; 10(4): 244-249.

Address for correspondence: Pelin Kiyat, MD. Department of Ophthalmology, Izmir Democracy University, Buca Seyfi Demirsoy Training and Research Hospital, Izmir, Türkiye
Phone: +90 536 256 11 12 **E-mail:** pelinkiyat@hotmail.com

Submitted Date: October 29, 2024 **Revised Date:** May 28, 2025 **Accepted Date:** June 23, 2025 **Available Online Date:** October 08, 2025

Beyoglu Eye Training and Research Hospital - Available online at www.beyoglueye.com

OPEN ACCESS This is an open access article under the CC BY-NC license (<http://creativecommons.org/licenses/by-nc/4.0/>).

tent (4). Claude 3.5 Sonnet (Anthropic, California, United States), a multimodal LLM released in early 2024, has the capability to analyze both textual and image data inputs (5).

In recent years, internationally recognized qualifications such as the European Board of Ophthalmology and the Fellowship of the Royal College of Ophthalmologists (FRCOphth) examinations have gained great popularity among young ophthalmologists, particularly ophthalmology residents, in our country. In preparation for these examinations, candidates frequently use question banks, as these resources closely resemble the format and content of the actual examinations. “Cybersight” is a comprehensive online training and mentorship platform for eye health professionals worldwide, with a particular focus on regions where access to learning resources is limited. Cybersight aims to improve the knowledge, skills, and expertise of eye care professionals globally. The platform offers a robust question bank that includes case-based scenarios with high-quality ophthalmic images across various subspecialties. This resource serves as an effective tool for ophthalmologists preparing for board examinations, providing them with opportunities to enhance their diagnostic and management skills through practical case scenarios (6). While previous studies have investigated the performance of LLMs in text-based ophthalmology board examination practice questions (2,7,8), no study up to date has evaluated the image-based case questions. Given that ophthalmology is a subspecialty heavily reliant on multimodal imaging and visual data interpretation, multimodal LLMs capable of image analysis are gaining increasing significance.

The present study aims to evaluate the performance of the novel multimodal LLM, Claude 3.5 Sonnet, in interpreting image-based ophthalmology case questions. The study utilizes case-based scenarios sourced from the “Cybersight” educational platform, which provides comprehensive coverage across ophthalmology subspecialties.

Methods

Claude 3.5 Sonnet (Anthropic, California, United States), a multimodal LLM released on June 21, 2024, was used to evaluate its performance on image-based case questions. The study utilized visual case questions from “Cybersight,” a comprehensive online training and mentorship platform for eye care professionals. A total of 174 image-based questions were selected for this study from the Cybersight question bank.

The questions were categorized into six subspecialties: “Retina and Uveitis” (n=30); “External Eye and Cornea” (n=23); “Orbit and Oculoplastics” (n=28); “Neuroophthalmology” (n=31); “Glaucoma and Cataract” (n=30); and “Strabismus, Pediatric Ophthalmology, and Genetics” (n=32).

While the original questions in Cybersight were presented in multiple-choice format, we conducted the study

by presenting each identical question in two different formats: (1) Presenting the complete question with multiple-choice options as originally designed and (2) presenting only the case scenario and images without the answer choices to assess whether Claude 3.5 Sonnet could generate correct open-ended responses. This approach allowed for direct comparison of the model’s performance on the same clinical scenarios in both multiple-choice and open-ended formats.

To standardize the input process, all questions were formatted using Microsoft Word, following the methodology described by Gilson et al. (9) For each question, the visual stem and relevant text were combined into a single paragraph. In multiple-choice questions, answer choices were placed on separate lines, with two empty lines inserted between the question stem and the choices. For open-ended evaluation, the same case descriptions and images were presented without the multiple-choice options. The images used in the study were directly obtained from the Cybersight question bank without any modifications. These images represented a comprehensive range of ophthalmological imaging modalities commonly used in clinical practice, including anterior segment photographs, slit-lamp images, fundus photographs, optical coherence tomography (OCT) scans, orbital imaging, and other diagnostic images typically used in clinical practice. Image quality varied but was consistently of diagnostic standard, with sufficient resolution and clarity to allow for identification of key pathological features. The diversity of imaging techniques across the different subspecialties provided an opportunity to evaluate Claude 3.5 Sonnet’s performance across the full spectrum of visual data encountered in ophthalmology practice.

A new account was created specifically for this study to eliminate potential bias from previous conversations. The conversation history was cleared, and the chatbot was refreshed before each new question to prevent carryover effects. All question inputs were performed by a single researcher (P.K.) to ensure consistency.

Researchers manually reviewed all answers to evaluate Claude 3.5 Sonnet’s performance. The answers provided by Claude 3.5 Sonnet were independently evaluated by two board-certified ophthalmologists. The evaluation was conducted by comparing Claude’s responses against the validated answers and explanations provided in our reference source material. Each evaluator assessed the accuracy and clinical appropriateness of the model’s responses utilizing the official answer key. Responses were recorded as correct or incorrect based on the official solutions provided by the Cybersight platform. This dual-review process ensured a consistent and objective assessment of the model’s performance across all subspecialty domains. The percentage of correct answers was calculated overall and for each subspecialty. Re-

sponses were scored as correct only if they demonstrated accurate identification of the pathology, correct diagnosis, and appropriate management consistent with the reference answers provided by the question bank.

Official permission was obtained from the Cybersight platform to use their questions for this research purpose. As this study did not involve human participants, institutional review board approval was not required.

The primary outcome measure was Claude 3.5 Sonnet's performance in providing correct responses to image-based ophthalmology practice questions. Secondary outcomes included comparisons of performance across the six ophthalmology subspecialties.

Statistical Analysis

IBM the Statistical Package for the Social Sciences version 25 (SPSS Inc., Chicago, IL, USA) was used for statistical purposes. Categorical variables were expressed as frequencies and percentages, and numerical variables were expressed as means and standard deviations. Researchers recorded the answers as correct or incorrect and the percentage of correct answers was calculated overall and for each subspecialty. Kolmogorov-Smirnov tests were used to determine whether the data were normally distributed. Independent t-test was performed to determine the differences in the normality of the distribution or Mann-Whitney U test was performed to determine differences in non-normal distribution. A P-value under 0.05 was considered statistically significant.

Results

The performance of Claude 3.5 Sonnet was evaluated in both multiple-choice and open-ended image-based questions (n=174), with further analysis by subspecialty.

For multiple-choice image-based questions, Claude 3.5 Sonnet demonstrated an 89.65% accuracy rate based on the images. In an open-ended format using the same questions, the model achieved a slightly lower but comparable 87.93% accuracy rate.

The model's performance across different subspecialties is detailed in Table 1, showing both multiple-choice and open-ended results. In both formats, "external eye and cornea" showed the highest accuracy (95.65% in both formats). The lowest performance was observed in "Strabismus and pediatric ophthalmology and genetics" (87.50% in multiple-choice and 84.38% in open-ended).

The difference in performance between multiple-choice and open-ended formats was not statistically significant overall ($p=0.72$) or within any individual subspecialty (all $p>0.05$), suggesting that Claude 3.5 Sonnet's diagnostic capabilities remain consistent regardless of question format.

Discussion

The present study evaluated the performance of Claude 3.5 Sonnet, a multimodal LLM, in interpreting image-based ophthalmology practice questions in various subspecialties. We compared its performance in both multiple-choice and open-ended question formats using identical clinical scenarios.

Claude 3.5 Sonnet demonstrated strong performance in interpreting ophthalmic images, with an overall accuracy of 89.65% in multiple-choice format and a comparable 87.93% in open-ended format.

To the best of our knowledge, this study represents the first comprehensive evaluation of Claude 3.5 Sonnet's performance specifically in ophthalmology-related images across all major subspecialties. The model's performance in ophthalmology significantly exceeds its previously reported capabilities in other medical imaging domains. In a recent study by Kurokawa et al., (10) Claude 3.5 Sonnet successfully diagnosed only 30.1% of radiology case questions with key images. In addition, another study reported that Claude 3.5 Sonnet achieved a 59% success rate in diagnosing breast ultrasound images (11).

Although previous studies have evaluated the performance of LLMs on text-based ophthalmology board practice questions, up to date, no study has specifically evaluated

Table 1. Comparison of Claude 3.5 Sonnets' performance between multiple-choice and open-ended formats across ophthalmology subspecialties

Subspecialties	Number of questions	Multiple-choice format	Open-ended format	p
		Correct/Total (%)	Correct/Total (%)	
Retina and uveitis	30	26/30 (86.67)	27/30 (90.00)	0.69
External eye and cornea	23	22/23 (95.65)	22/23 (95.65)	1.00
Orbit and oculoplastics	28	25/28 (89.29)	24/28 (85.71)	0.71
Neuroophthalmology	31	28/31 (90.32)	27/31 (87.10)	0.68
Glaucoma and cataract	30	27/30 (90.00)	26/30 (86.67)	0.72
Strabismus and Ped. Oph. and genetics	32	28/32 (87.50)	27/32 (84.38)	0.73
Overall	174	156/174 (89.65)	153/174 (87.93)	0.72

LLMs' performance on ophthalmology-related image-based case questions. Previous studies assessing text-based ophthalmology board practice questions have reported that ChatGPT, a popular LLM, achieved success rates ranging from 60% to 80% in various practice question sources (2,7,8). Recently, attempts have been made to evaluate LLMs in interpreting ophthalmological images. A study by Mihalache et al. (12) evaluated LLMs' ability to interpret OCT images. In this study, 448 OCT images were analyzed and their model demonstrated a 65% success rate in correct detection. In another study by Antaki et al., (13) the diagnostic capabilities of the LLMs-Gemini Pro model in interpreting OCT images were evaluated. The research included 50 patients with various retinal pathologies. In that study, the LLMs-Gemini Pro model showed a correct diagnosis rate of 34%.

Claude 3.5 Sonnet showed remarkably consistent performance between multiple-choice (89.65% accuracy) and open-ended questions (87.93% accuracy). This consistency in performance between different question formats is worth analyzing, given the structural differences between these types of questions. Multiple-choice questions, with their predefined options, typically align closely with the pattern recognition and classification algorithms intrinsic to many AI models (14). Open-ended questions, on the other hand, necessitate a more complex set of cognitive processes. The model must not only recognize and classify the pathology present in the image but also generate a coherent, relevant response without the guidance of predefined options. This involves a higher level of language understanding and generation capabilities, requiring the model to respond in a flexible manner, drawing from its training across medical knowledge domains. The consistently strong performance across both question types with no statistically significant difference highlights Claude 3.5 Sonnet's versatility in medical image interpretation regardless of the response format required. This suggests that the model possesses not only strong pattern recognition capabilities for identifying ophthalmic pathologies but also robust medical reasoning abilities that allow it to independently formulate accurate diagnostic and management recommendations when no options are provided. This capability shows a remarkable improvement in AI-related medical image interpretation, potentially paving the way for more comprehensive clinical decision support. However, it is imperative to emphasize that the images used in this study were sourced from board examination preparation materials which represent a standardized set of clinical scenarios and they may not fully capture the complexity of real-world clinical presentations.

The successful performance of Claude 3.5 Sonnet in cornea and external eye cases (95.65% accuracy in both open-ended and multiple-choice questions) compared to

other subspecialties is an important finding. Several factors may contribute to this higher performance. Corneal and external eye conditions often present with more visually distinct features which may align better with the pattern recognition capabilities of AI models. In addition, clear views typically offered by external eye photographs and slit-lamp photography might enable more accurate interpretation. The relatively lower performance in "Strabismus, Pediatric Ophthalmology, and Genetics" (84.38% in open-ended and 87.50% in multiple-choice) may be attributed to several factors. First, this subspecialty often involves complex alignment issues that require a three-dimensional understanding from two-dimensional images. Second, pediatric ophthalmology cases frequently require integration of age-specific considerations and developmental factors that may not be as prominently featured in the training data. Third, genetic conditions in ophthalmology often present with subtle clinical manifestations that may be challenging to distinguish from static images alone.

In contrast to this current study, Minalache et al.'s study (12) evaluated both image-based and non-image-based case scenarios in ophthalmology and their LLMs showed the highest performance in the retina category (77% correct responses) and the lowest in neuro-ophthalmology (58% correct responses). Our findings differ significantly, with external eye and cornea showing the highest performance (95.65% accuracy in both open-ended and multiple-choice questions) and Strabismus and Pediatric Ophthalmology and Genetics showing the lowest (84.38% in open-ended and 87.50% in multiple-choice). Importantly, our study demonstrates substantially higher accuracy across all subspecialties. In addition, their research did not evaluate image-based questions related to cornea and external eye diseases or orbital-oculoplastic pathologies, which were included in our comprehensive analysis of six major ophthalmology subspecialties.

The performance of Claude 3.5 Sonnet suggests potential applications in both ophthalmology education and clinical practice. The model's high accuracy in board-style questions suggests its potential use in examination preparation, allowing students and residents to practice image interpretation and receive immediate feedback. Moreover, the model's ability to handle both multiple-choice and open-ended questions with similar accuracy could support a variety of learning styles and formats. However, it is crucial to emphasize that AI should be only complementary, not a replacement for traditional clinical education methods. In this current study, the aim was also to emphasize the potential of LLMs, and Claude 3.5 Sonnet's ability to efficiently analyze high volumes of images in busy clinical departments might offer an advantage in image-intensive

subspecialties like ophthalmology and it might serve as a valuable diagnostic tool. However, this research also highlights the need for cautious implementation to reduce the risk of over-reliance on it.

The current study has several limitations. First, the questions were derived from ophthalmology examination practice materials, which may not fully represent the complexity of real-world clinical scenarios. Second, while we achieved a more balanced distribution of questions across subspecialties, there were still slight variations in sample sizes between subspecialties that may have influenced performance comparisons. Third, our evaluation focused on a single multimodal LLM when the number of LLMs capable of processing medical images at this level was quite limited. Fourth, we did not include a comparative analysis with human ophthalmologists at different training levels, which would have provided valuable context for interpreting the model's performance relative to human experts.

Future research should include comparative analyses with human experts at various training levels (residents, fellows, and attending physicians) to provide valuable context about the model's relative capabilities across different ophthalmological issues. In addition, head-to-head comparisons between multiple LLMs with different architectures would help understand their relative strengths and limitations in ophthalmological image interpretation. Further work should explore how these models perform with more complex, ambiguous cases or rare conditions that might not be well-represented in standard question banks. Investigating how these models might be optimized specifically for ophthalmological applications through fine-tuning or specialized training could potentially enhance their performance in this domain.

Conclusion

These results demonstrate that Claude 3.5 Sonnet shows strong performance in interpreting ophthalmic images across all major ophthalmology subspecialties, with comparable accuracy in both multiple-choice (89.65%) and open-ended question formats (87.93%).

The model performed most effectively in the cornea and external eye subspecialty, while showing slightly lower but still impressive accuracy in strabismus, pediatric ophthalmology, and genetics cases. The consistent performance across different question formats highlights Claude 3.5 Sonnet's versatility in medical image interpretation and reasoning. These findings suggest potential applications in ophthalmology education, board examination preparation, and as a complementary tool in clinical settings. However, further research is imperative to validate the model's utility in real-world clinical scenarios and to compare its performance with that of ophthalmologists at various training levels.

Disclosures

Acknowledgements: This study was presented as an oral presentation at the SOE 2025 Congress, held on June 7-9 2025

Ethics Committee Approval: As this study did not involve human participants, institutional review board approval was not required.

Conflict of Interest: None declared.

Funding: The authors declare that this study has received no financial support.

Use of AI for Writing Assistance: Not declared.

Author Contributions: Concept – P.K., H.G.K.; Design – P.K.; Supervision – P.K.; Resource – H.G.K.; Materials – P.K., H.G.K.; Data Collection and/or Processing – P.K.; Analysis and/or Interpretation – P.K.; Literature Search – P.K., H.G.K.; Writing – P.K.; Critical Reviews – P.K., H.G.K.

Peer-review: Externally peer-reviewed.

References

1. Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial intelligence and deep learning in ophthalmology. *Br J Ophthalmol* 2019;103:167–75. [\[CrossRef\]](#)
2. Mihalache A, Popovic MM, Muni RH. Performance of an artificial intelligence chatbot in ophthalmic knowledge assessment. *JAMA Ophthalmol* 2023;141:589–97. [\[CrossRef\]](#)
3. Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L, Elepaño C, et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. *PLOS Digit Health* 2023;2:e0000198. [\[CrossRef\]](#)
4. Oura T, Tatekawa H, Horiuchi D, Matsushita S, Takita H, Atsukawa N, et al. Diagnostic accuracy of vision-language models on Japanese diagnostic radiology, nuclear medicine, and interventional radiology specialty board examinations. *Jpn J Radiol* 2024;42:1392–8. [\[CrossRef\]](#)
5. Anthropic AI. The Claude 3 model family: Opus, Sonnet, Haiku. Claude-3 Model Card. 2024.
6. Cybersight. Available from: <https://cybersight.org/>. Accessed Sep 1, 2025.
7. Haddad F, Saade JS. Performance of ChatGPT on ophthalmology-related questions across various examination levels: Observational study. *JMIR Med Educ* 2024;10:e50842. [\[CrossRef\]](#)
8. Cai LZ, Shaheen A, Jin A, Fukui R, Yi JS, Yannuzzi N, et al. Performance of generative large language models on ophthalmology board-style questions. *Am J Ophthalmol* 2023;254:141–9. [\[CrossRef\]](#)
9. Gilson A, Safranek CW, Huang T, Socrates V, Chi L, Taylor RA, et al. How does ChatGPT perform on the United States Medical Licensing Examination (USMLE)? The implications of large language models for medical education and knowledge assessment. *JMIR Med Educ* 2023;9:e45312. Erratum in: *JMIR Med Educ* 2024;10:e57594. [\[CrossRef\]](#)
10. Kurokawa R, Ohizumi Y, Kanzawa J, Kurokawa M, Sonoda Y, Nakamura Y, et al. Diagnostic performances of Claude 3 Opus

and Claude 3.5 Sonnet from patient history and key images in Radiology's "Diagnosis Please" cases. *Jpn J Radiol* 2024;42:1399–402. [\[CrossRef\]](#)

11. Güneş YC, Cesur T, Çamur E, Günbey Karabekmez L. Evaluating text and visual diagnostic capabilities of large language models on questions related to the Breast Imaging Reporting and Data System Atlas 5th edition. *Diagn Interv Radiol* 2025;31:111–29. [\[CrossRef\]](#)

12. Mihalache A, Huang RS, Popovic MM, Patil NS, Pandya BU, Shor R, et al. Accuracy of an Artificial Intelligence chatbot's interpretation of clinical ophthalmic images. *JAMA Ophthalmol* 2024;142:321–6. [\[CrossRef\]](#)

13. Antaki F, Chopra R, Keane PA. Vision-language models for feature detection of macular diseases on optical coherence tomography. *JAMA Ophthalmol* 2024;142:573–6. [\[CrossRef\]](#)

14. Jiao C, Edupuganti NR, Patel PA, Bui T, Sheth V. Evaluating the artificial intelligence performance growth in ophthalmic knowledge. *Cureus* 2023;15:e45700. [\[CrossRef\]](#)

Large Inferior Rectus Recession without Lower Eyelid Retraction in Thyroid Eye Disease

Birsen Gokyigit,¹ **Asli Inal,²** **Ceren Gurez²**

¹Department of Ophthalmology, Private practice, Istanbul, Türkiye

²Department of Ophthalmology, University of Health Sciences, Beyoglu Eye Training and Research Hospital, Istanbul, Türkiye

Abstract

Objectives: In this study, a new technique that does not cause lower eyelid retraction in patients with excessive limitation of movement and vertical strabismus due to inferior rectus (IR) fibrosis in thyroid eye disease was introduced.

Methods: There were six patients with their six eyes with their mid-term results.

Operation Technique: According to the deviation amount, a 7–14 mm length bovine pericardium (Tutopatch®) was inserted between the distal end of the tendon and the beginning of the muscle fibers, which are located between the tendon's distal end and the tendon muscle junction to the IR with 6/0 non-absorbable suture.

Results: There were six cases with a mean 19.5 ± 5.2 PD (PD: prism diopters) (14–26 PD) vertical deviation and severe up-gaze limitations with a mean -4.1 ± 0.75 . The post-operative vertical deviation was a mean of 3.5 ± 1.22 PD, and the limitation of upgaze was a mean of -1.3 ± 0.4 .

Conclusion: This procedure provides effective results in reducing gaze limitation and vertical deviation in thyroid patients without causing any problems in the eyelids.

Keywords: Bovine pericardium, thyroid eye disease, vertical strabismus

Introduction

The inferior rectus (IR) inserts in the vertical meridian, approximately 6.5 mm from the limbus and 9.8 mm wide at its insertion on the globe. The tendon is 7 mm in length, measured from the origin (1). The IR also interacts with the lower eyelid via a fascial connection from its sheath. Weakening or recession of the IR more than 4.5–5 mm may widen the palpebral fissure, and this can cause lower lid droop (2).

Although various techniques have been described to prevent this, these usually require post-operative lower eyelid

surgery. Although the previously described technique of recessing the deep fibers of the IR allows for large recessions without causing lower eyelid retraction, this technique cannot be applied to fibrotic muscles (3,4).

Different from the neurogenic extraocular paralysis, motility problems in patients with thyroid eye disease (TED) occur due to fibrosis in the muscles. This limitation will restrict the eye movements. The treatment of strabismus in these patients, first of all, will be by recession of this fibrotic muscle.

How to cite this article: Gokyigit B, Inal A, Gurez C. Large Inferior Rectus Recession without Lower Eyelid Retraction in Thyroid Eye Disease. Beyoglu Eye J 2025; 10(4): 250-253.

Address for correspondence: Asli Inal, MD. Department of Ophthalmology, University of Health Sciences, Beyoglu Eye Training and Research Hospital, Istanbul, Türkiye

Phone: +90 505 270 36 56 **E-mail:** a_hamis@yahoo.com

Submitted Date: October 29, 2025 **Revised Date:** November 30, 2025 **Accepted Date:** December 01, 2025 **Available Online Date:** January 19, 2026

Beyoglu Eye Training and Research Hospital - Available online at www.beyoglueye.com

OPEN ACCESS This is an open access article under the CC BY-NC license (<http://creativecommons.org/licenses/by-nc/4.0/>).

The technique has previously been presented at various meetings. (Gokyigit B et al. TOA 52. Annual meeting 2018; Inal A, Karabulut GO, Ocak OB, Gokyigit B. AAO annual meeting 2018).

We were inspired by the three publications in developing the technique (5-7). However, in all three publications, the Tutopatch was placed between the muscle insertion and the beginning of the tendon.

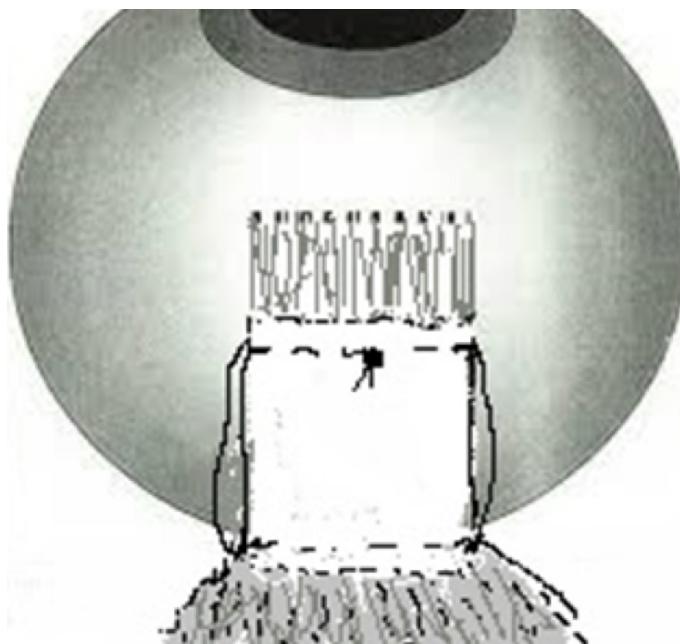
In this study, we introduce a new technique that does not cause lower eyelid retraction in TED patients with the results of six cases.

Methods

This retrospective study was approved by the Ethics Committee of Okmeydanı Training and Research Hospital, with the number 967, and conducted in accordance with the principles of the Declaration of Helsinki. Written informed consent was obtained from the patients following a detailed explanation of the study objectives and protocol.

There were six patients with their six eyes in this study. All patients underwent detailed anterior and posterior segment examination. Besides vertical and horizontal deviation amounts, we noted their lower lid retraction, scleral show amounts, limitation of elevation, and globe elevation from the mid-horizontal line amounts.

The lower eyelid retraction was measured with the scleral show method. Postoperatively, if the scleral show amount was found to be ≤ 0.5 mm, it was accepted as successful, between 0.5 and 1 mm as partial success, and ≥ 1 mm as failure. Ductions were graded on an ordinal scale from -4 (underaction) to +4 (overaction). Postoperatively, if the globe passed the mid-horizontal line or the limitation was ≤ -1 , it was considered successful; if the limitation was -2, it was considered partial success; and if it was -3 or above, it was considered unsuccessful.


Operation Technique

According to the deviation amount, 7–14 mm length bovine pericardium (Tutopatch®) was inserted between the distal end of the tendon and the beginning of the muscle fibers, which are located between the tendon's distal end and tendon muscle junction to the IR with 6/0 non-absorbable suture. The non-absorbable sutures (Dacron® 6-0 suture) were left at the same length on both sides of the Tutopatch as protection against any possible dissolution later. There is no processing performed on the IR insertion. Placing the pericardium distal edge to the beginning of IR fibers, as shown in Figure 1, the final perspective from the operation is shown in Figure 2.

All surgeries were performed by a single surgeon. (BG)

Figure 1. Placing the pericardium distal edge at the beginning of the inferior rectus fibers.

Figure 2. Final perspective from the operation.

Results

There were four males and two females. Their ages were between 35 and 62 (mean 47.5 ± 12.07) years, and their vertical deviations were between 14 and 26 PD (mean 19.5 ± 5.2). The elevation limitation was found between -3 and -5. While there was a slightly lower lid retraction in three patients, there was no retraction in the others.

Patients' post-operative mean vertical deviations were found to be 3.5 ± 1.22 PD, and the limitation of elevation was found to be -1.3 ± 0.4 . While eyelid retraction was under 0.5

Table I. Patients' demographics, pre-operative and post-operative findings

No.	Gender	Age (year)	Vert. deviation		Lim. of elevation		Lower lid retr.		Follow up (m)
			Preop	Postop	Preop	Postop	Preop	Postop	
1.	Male	41	14	2	-4	0	-	-	14
2.	Male	61	25	4	-5	-1 (-2)	±	±	14
3.	Male	62	26	5	-5	-1 (-2)	±	±	18
4.	Female	36	18	2	-4	-1	-	-	13
5.	Female	35	14	4	-3	-1	-	-	24
6.	Male	50	20	4	-4	-1 (-2)	±	±	10

Vert:Vertical; Lim: Limitation; retr: Retraction; m: Month; preop: Pre-operative; Postop: Post-operative; Limited abduction levels: -5, no abduction to 0, normal abduction.

mm in 3 patients, no retraction was detected in the others, and there was no change in the amount of lower eyelid retraction after surgery.

The follow-up of all the patients was over a year (15.5 ± 4.88 months). Patients' demographics, pre-operative and post-operative findings are shown in Table I. None of the patients required a second surgery.

The limitations of this study are the small number of patients and the fact that all of our patients were affected and operated on only one eye. Therefore, the results of applying the surgical technique to both eyes could not be evaluated.

Discussion

Esser, Schittkowski, and Eckstein performed recession of the IR muscle in 10 patients with simultaneous suturing of bovine pericardium (Tutopatch) (5). The new technique of tendon elongation using a bovine pericardium graft is applicable in large vertical squint angles (with or without prior bony orbital decompression) as well as for corrections after insufficient simple recessions (by realignment of the muscle and secondary suturing of the graft). Their dosing formula: 1 mm IR recession [including graft] leads to 2.0° vertical angle reduction. We performed the adding Tutopatch operation not between the insertion and the beginning of the tendon, but at the end of the tendon and the beginning of the muscle. Thus, we left the IR sheath and lower eyelid retractors outside the operating area.

Conclusion

Tendon elongation with tissues was used previously, but these cases needed additional lower lid procedures to prevent lower lid retraction from time to time. In this new approach, tissues are not inserted between the tendon and its insertion, but located between the tendon's distal end and the tendon muscle junction.

In conclusion, this operation does not affect the lower lid retractor, and the operation has both effective results and no lid problems.

Disclosures

Ethics Committee Approval: This study was approved by the Okmeydanı Training and Research Hospital Ethics Committee (Date: 10.08.2018, Number: 967) and conducted in accordance with the tenets of the Declaration of Helsinki.

Informed Consent: Written informed consents were obtained from all patients.

Conflict of Interest: None declared.

Funding: The authors declare that this study has received no financial support.

Use of AI for Writing Assistance: Not declared.

Author Contributions: Concept – B.G.; Design – B.G., A.I.; Supervision – B.G.; Materials – B.G., A.I., C.G.; Data Collection and/or Processing – A.I., C.G.; Analysis and/or Interpretation – B.G., A.I., C.G.; Literature Search – B.G., C.G.; Writing – B.G., A.I.; Critical Reviews – A.I.

Peer-review: Externally peer-reviewed.

References

- McDougal DH, Gamlin PD. Autonomic control of the eye. *Compr Physiol.* 2015 Jan;5(1):439–73. [\[CrossRef\]](#)
- Shumway CL, Motlagh M, Wade M. Anatomy, head and neck: Eye inferior rectus muscle. [Updated 2023 Mar 28]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available at: <https://www.ncbi.nlm.nih.gov/books/NBK518978/> Accessed December 17, 2025
- Gokyigit B, Akar S, Yilmaz OF. A novel technique of inferior rectus recession *Clin Ophthalmol* 2014; 8: 263–9. [\[CrossRef\]](#)
- Gokyigit B, Akar S, Kaynak P, Demirok A, Yilmaz OF. Long-term results of deeper muscle fibers recession of an inferior rectus operation. *J Pediatr Ophthalmol Strabismus* 2014;51:17–26. [\[CrossRef\]](#)

5. Esser J, Schittkowski M, Eckstein A. Graves' orbitopathy: inferior rectus tendon elongation for large vertical squint angles that cannot be corrected by simple muscle recession. *Klin Monbl Augenheilkd* 2011;228:880–6. [Article in German] [\[CrossRef\]](#)
6. Wipf M, Berg BI, Palmowski-Wolfe A. Medial rectus tendon elongation with bovine pericard (Tutopatch®) in thyroid-assoc-
iated orbitopathy: A long-term follow-up including oculodynamic MRI. *J Ophthalmol* 2018;2018:1294761. [\[CrossRef\]](#)
7. Oeverhaus M, Fischer M, Hirche H, Schlüter A, Esser J, Eckstein AK. Tendon elongation with bovine pericardium in patients with severe esotropia after decompression in graves' orbitopathy-efficacy and long-term stability. *Strabismus* 2018;26:62–70. [\[CrossRef\]](#)

Tamoxifen Retinopathy and Macular Telangiectasia Type 2: Case-Based Differential Diagnosis

Abdullah Erdem, Sule Acar Duyan

Department of Ophthalmology, Selcuk University, Konya, Türkiye

Abstract

Tamoxifen is a widely used agent for the treatment of breast cancer worldwide. Despite its significant efficacy in breast cancer, serious side effects may occur with long-term or high-dose use. One of these side effects is tamoxifen retinopathy (TR). Tamoxifen retinopathy typically presents with bilateral visual impairment, crystalline deposits, and changes in the foveal reflex during fundus examination. Although characteristic features can be observed with multimodal imaging, it may be confused with various retinal pathologies. One of the primary conditions considered in the differential diagnosis of TR is macular telangiectasia type 2 (Mac-Tel 2). In this case presentation, we aim to share the differential diagnosis process of TR and highlight the distinguishing features from Mac-Tel 2 in a female patient who presented with decreased vision, based on the patient's history, detailed fundoscopic examination findings, and multimodal imaging.

Keywords: Macular telangiectasia, multimodal imaging, optical coherence tomography, tamoxifen retinopathy

Introduction

Tamoxifen is a non-steroidal estrogen receptor antagonist. It is widely used as adjuvant therapy for estrogen receptor-positive breast cancer worldwide. In standard protocols, the duration of tamoxifen treatment can extend to 5–10 years (1). Due to its long-term use, systemic and ocular side effects of tamoxifen have become prominent. The ocular toxicity of tamoxifen was first described by Kaiser-Kupfer and Lippman in 1978 (2). Although the doses used in the first cases reported were much higher than those used today, tamoxifen toxicity can still occur due to prolonged use and individual patient characteristics (3).

Currently, with the help of multimodal imaging tech-

niques and typical examination findings, a diagnosis of TR can be established. However, in some patients, even with detailed examination and imaging, TR can be confused with other retinal pathologies. One of the retinal conditions most commonly confused with TR is Mac-Tel 2. Mac-Tel 2 is a progressive, bilateral retinal neurodegenerative disease associated with telangiectatic changes (4). Distinguishing between TR and Mac-Tel 2 is crucial for deciding whether to discontinue tamoxifen therapy and for planning ophthalmological interventions if the disease progresses.

In this case report, we present a differential diagnosis of tamoxifen retinopathy based on the patient's history, examination, and the distinguishing features observed through multimodal imaging.

How to cite this article: Erdem A, Acar Duyan S. Tamoxifen Retinopathy and Macular Telangiectasia Type 2: Case-Based Differential Diagnosis. Beyoglu Eye J 2025; 10(4): 254-257.

Address for correspondence: Abdullah Erdem, MD. Department of Ophthalmology, Selcuk University, Konya, Türkiye
Phone: +90 507 548 79 25 **E-mail:** erdemabd@gmail.com

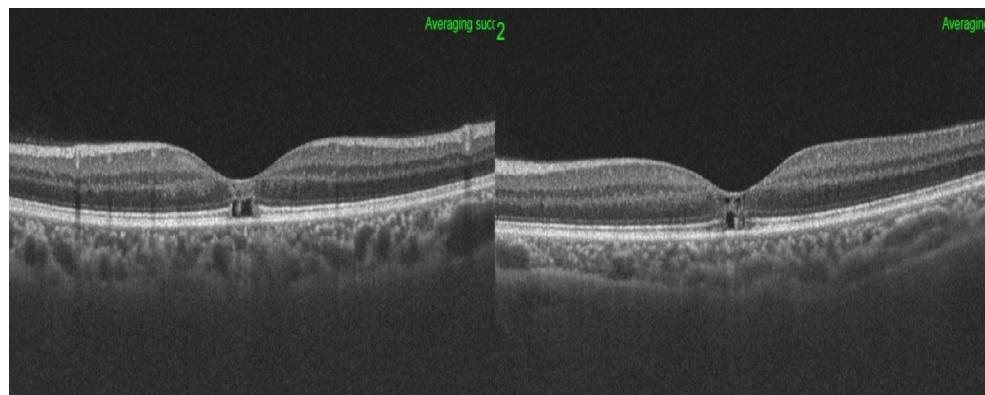
Submitted Date: May 01, 2025 **Revised Date:** September 05, 2025 **Accepted Date:** September 29, 2025 **Available Online Date:** January 19, 2026

Beyoglu Eye Training and Research Hospital - Available online at www.beyoglueye.com

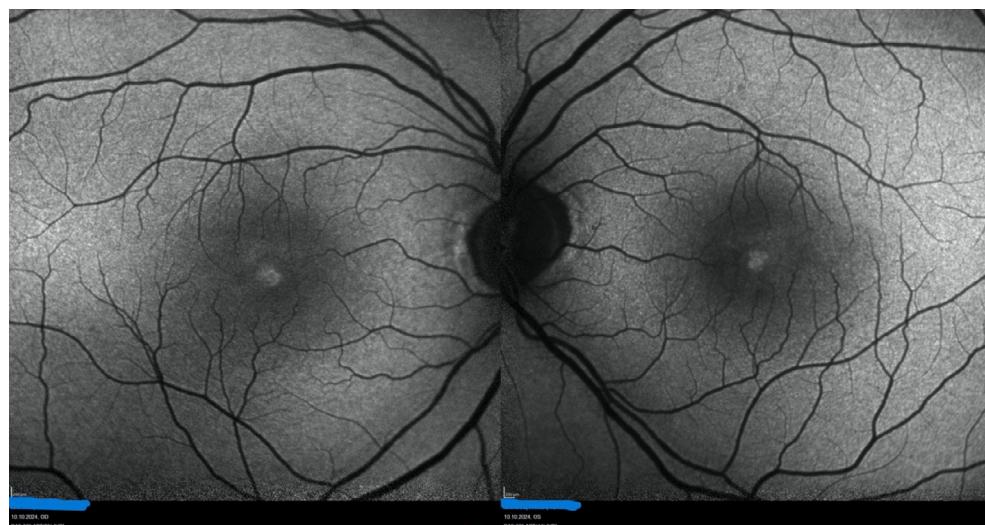
OPEN ACCESS This is an open access article under the CC BY-NC license (<http://creativecommons.org/licenses/by-nc/4.0/>).

Case Report

A 47-year-old female patient presented to our clinic with blurred vision in both eyes for the past 2–3 months. The patient had received radiotherapy due to breast cancer and had been using 20 milligrams per day of an estrogen receptor antagonist (tamoxifen) and a gonadotropin-releasing hormone agonist (goserelin) for five years. She had no other known systemic or ophthalmologic diseases.


A detailed ophthalmological examination was performed. Best-corrected visual acuity (BCVA) was 8/20 in both eyes according to the Snellen chart. Intraocular pressures were within normal limits in both eyes. Biomicroscopic examination revealed a normal anterior segment in both eyes. After pupil dilation with 0.05% tropicamide, fundus examination showed normal optic discs and vascular structures bilaterally. Refractive crystalline deposits were observed in the bilateral central macula, while the peripheral retina appeared normal.

Optical coherence tomography (OCT) revealed a central macular thickness of 227 microns in the right eye and 257


microns in the left eye, with intraretinal cavitation and disruption of the ellipsoid zone bilaterally (Fig. 1). Retinal nerve fiber layer thicknesses were within normal limits. Fundus autofluorescence (FAF) imaging showed increased hyperreflectivity at the fovea bilaterally (Fig. 2). Optical coherence tomography angiography (OCT-A) showed no significant microvascular changes. Fundus fluorescein angiography (FFA) revealed no vascular leakage or telangiectatic changes.

Based on the patient's history of tamoxifen use, fundoscopic findings, and characteristic multimodal imaging features, a diagnosis of TR was established, and the patient was referred to the Department of Medical Oncology. Tamoxifen therapy was discontinued, and a new treatment was planned by Medical Oncology. No significant change was observed in the patient's visual acuity and retinal findings during the six-month follow-up after discontinuation of tamoxifen treatment.

Written informed consent was obtained from the patient for the publication of the case report and the accompanying images.

Figure 1. Foveal cavitation and disruption of the ellipsoid zone are observed in the OCT images of the patient's right and left eyes.

Figure 2. Foveal hyperautofluorescence is observed in the FAF images of the patient's right and left eyes.

Discussion

Tamoxifen retinopathy is a toxic maculopathy that develops due to the long-term or high-dose use of tamoxifen and can be irreversible (5). In our case, the patient's history of tamoxifen use, decreased visual acuity, and multimodal imaging findings were consistent with TR. Imaging, particularly OCT, revealed foveal cavitation, ellipsoid zone disruption, and refractive deposits, suggestive of TR (6). One of the leading differential diagnoses for TR is Mac-Tel 2, a retinal disease with similar clinical and imaging characteristics. These phenotypic similarities may be related to Müller cell involvement in both diseases (4).

In Mac-Tel 2, foveal cavitation, outer retinal layer disruption, and crystalline-like deposits in the fundus can also be observed, necessitating careful differential diagnosis. However, Mac-Tel 2 typically presents with progressive bilateral neurodegeneration, telangiectatic changes in the retina, and subretinal neovascularization in advanced stages (7). In TR, the degenerative process is predominantly related to toxicity, and a history of tamoxifen use is typically present. Fundus autofluorescence (FAF) imaging can show foveal changes in both diseases. In TR, hyperautofluorescent foci at the fovea generally correspond to crystalline deposits, whereas in Mac-Tel 2, there are typically foveal hyperautofluorescence and autofluorescence changes associated with parafoveal vascular changes (8–9). In our case, the hyperreflectivity observed at the fovea on FAF was consistent with TR findings.

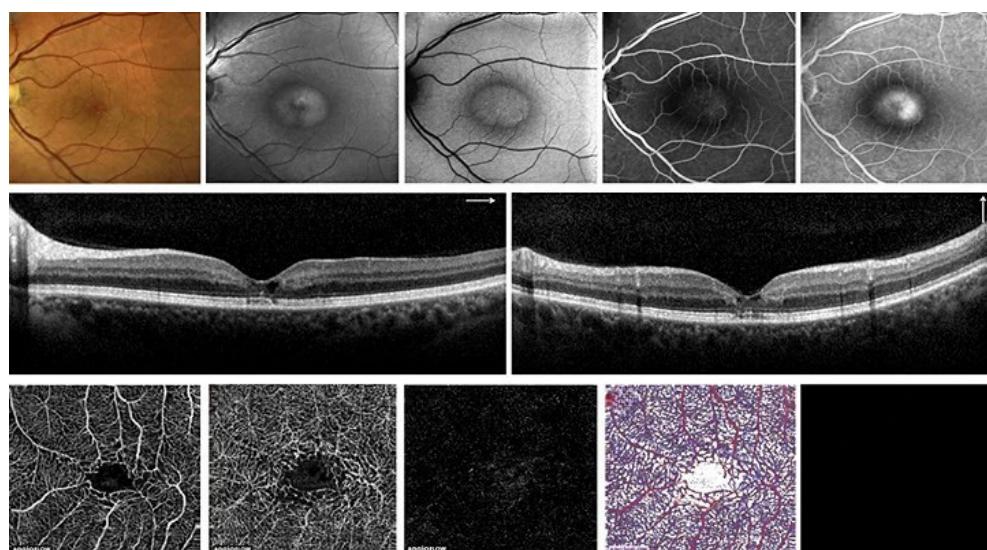
In Mac-Tel 2, OCT-A typically reveals telangiectatic vascular structures at the level of the deep capillary plexus and subretinal neovascularization in later stages (10). In contrast, significant vascular abnormalities are not typical in TR on OCT-A, although early microvascular irregularities resem-

bling Mac-Tel 2 have been reported (11). The absence of notable capillary telangiectasia or neovascular membranes in OCT-A in our case helped to exclude Mac-Tel 2.

Fundus fluorescein angiography in Mac-Tel 2 characteristically shows late-phase hyperfluorescence and vascular leakage around the temporal fovea (Fig. 3) (12). In TR, typical findings on FFA are usually absent, and nonspecific changes may be seen (13). In our case, the absence of vascular leakage or telangiectatic structures on FFA supported the diagnosis of TR.

Conclusion

In conclusion, despite clinical and imaging similarities between TR and Mac-Tel 2, patient history and multimodal imaging findings play a critical role in establishing the correct diagnosis. Specifically, hyperautofluorescence corresponding to crystalline deposits on FAF, foveal cavitation with ellipsoid zone disruption on OCT, and the absence of vascular abnormalities typical for Mac-Tel 2 on OCT-A and FFA strongly support a diagnosis of TR. Following diagnosis, consulting the Department of Medical Oncology to discontinue tamoxifen treatment is crucial to prevent disease progression. Therefore, routine comprehensive retinal evaluations are essential for early diagnosis in patients using tamoxifen.


Disclosures

Informed Consent: Written informed consent was obtained from all patients.

Conflict of Interest: None declared.

Funding: The author declared that this study has received no financial support.

Use of AI for Writing Assistance: None declared.

Figure 3. Color fundus photograph, FAF, FFA, OCT, and OCT angiography images of a Mac-Tel 2 case (14).

Author Contributions: Concept – A.E., S.A.D.; Design – A.E., S.A.D.; Supervision – A.E., S.A.D.; Resource – A.E., S.A.D.; Materials – A.E., S.A.D.; Data Collection and/or Processing – A.E., S.A.D.; Analysis and/or Interpretation – A.E., S.A.D.; Literature Search – A.E., S.A.D.; Writing – A.E., S.A.D.; Critical Reviews – A.E., S.A.D.

Peer-review: Externally peer-reviewed.

References

1. Davies C, Pan H, Godwin J, Gray R, Arriagada R, Raina V, et al.; Adjuvant Tamoxifen: Longer Against Shorter (ATLAS) Collaborative Group. Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. *Lancet* 2013;381(9869):805–16. Erratum in: *Lancet*. 2013;381(9869):804. Erratum in: *Lancet* 2017;389(10082):1884.
2. Kaiser-Kupfer MI, Lippman ME. Tamoxifen retinopathy. *Cancer Treat Rep* 1978;62(3):315–20.
3. Tenney S, Oboh-Weilke A, Wagner D, Chen MY. Tamoxifen retinopathy: A comprehensive review. *Surv Ophthalmol* 2024;69(1):42–50. [\[CrossRef\]](#)
4. Hess K, Park YJ, Kim HA, Holz FG, Charbel Issa P, Yoon YH, et al. Tamoxifen retinopathy and macular telangiectasia type 2: Similarities and differences on multimodal retinal imaging. *Ophthalmol Retina* 2023;7(2):101–10. [\[CrossRef\]](#)
5. Kwon HY, Kim J, Ahn SJ. Drug exposure and risk factors of maculopathy in tamoxifen users. *Sci Rep* 2024;14(1):16792. [\[CrossRef\]](#)
6. Gualino V, Cohen SY, Delyfer MN, Sahel JA, Gaudric A. Optical coherence tomography findings in tamoxifen retinopathy. *Am J Ophthalmol* 2005;140(4):757–8. [\[CrossRef\]](#)
7. Kedarisetty KC, Narayanan R, Stewart MW, Reddy Gurram N, Khanani AM. Macular telangiectasia type 2: A comprehensive review. *Clin Ophthalmol* 2022;16:3297–309. [\[CrossRef\]](#)
8. Nair SN, Anantharaman G, Gopalakrishnan M, Vyas J. Spectral domain optical coherence tomography findings in tamoxifen retinopathy--a case report. *Retin Cases Brief Rep* 2013;7(2):128–30. [\[CrossRef\]](#)
9. Wong WT, Forooghian F, Majumdar Z, Bonner RF, Cunningham D, Chew EY. Fundus autofluorescence in type 2 idiopathic macular telangiectasia: correlation with optical coherence tomography and microperimetry. *Am J Ophthalmol* 2009;148(4):573–83. [\[CrossRef\]](#)
10. Nalci H, Şermet F, Demirel S, Özmet E. Optical coherence tomography angiography findings in type-2 macular telangiectasia. *Turk J Ophthalmol* 2017;47(5):279–84. Erratum in: *Turk J Ophthalmol* 2018;48(1):56. [\[CrossRef\]](#)
11. Lee S, Kim HA, Yoon YH. OCT Angiography findings of tamoxifen retinopathy: Similarity with macular telangiectasia type 2. *Ophthalmol Retina* 2019;3(8):681–9. [\[CrossRef\]](#)
12. Charbel Issa P, Finger RP, Holz FG, Scholl HP. Eighteen-month follow-up of intravitreal bevacizumab in type 2 idiopathic macular telangiectasia. *Br J Ophthalmol* 2008;92(7):941–5. [\[CrossRef\]](#)
13. Doshi RR, Fortun JA, Kim BT, Dubovy SR, Rosenfeld PJ. Pseudocystic foveal cavitation in tamoxifen retinopathy. *Am J Ophthalmol* 2014;157(6):1291–8.e3. [\[CrossRef\]](#)
14. Toto L, Di Antonio L, Mastropasqua R, Mattei PA, Carpineto P, Borrelli E, Rispoli M, Lumbroso B, Mastropasqua L. Multimodal imaging of macular telangiectasia type 2: Focus on vascular changes using optical coherence tomography angiography. *Invest Ophthalmol Vis Sci* 2016;57(9):268–76. [\[CrossRef\]](#)

An Ophthalmic Entity More Than Liver Disease, Alagille Syndrome: A Genetically Confirmed Case Report

 Tulin Ogreden

Department of Ophthalmology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkiye

Abstract

Alagille syndrome (ALGS) is a rare autosomal dominant disease that mainly affects the bile ducts and the liver. This syndrome may be associated with ophthalmic anomalies, but systemic diseases are often so obvious compared to ocular findings that many patients are referred to eye clinics after diagnosis. The diagnosis of ALGS is based on medical history and clinical findings. In this report, we describe and present a systemic disease of an undiagnosed ALGS based on eye findings. Papilledema and posterior embryotoxon were detected in the patient who was investigated due to headache. The diagnosis was made based on ophthalmological findings and was confirmed by genetic consultation. Missense mutations of the jagged canonical Notch ligand 1 gene located on chromosome 20p12.2 were detected. The patient benefited from treatment aimed at increasing intracranial pressure, and the etiology of symptoms related to other systems was clarified. The aim of this report is to support a clinical approach that evaluates possible common and rare comorbidities in ALGS from an ophthalmic perspective. We also emphasize the diversity of clinical presentation. ALGS affects multiple systems, so an integrative approach is important.

Keywords: Alagille syndrome, Jagged canonical Notch ligand 1 gene, Papilledema, Posterior embryotoxon

Introduction

Alagille syndrome (ALGS) is a rare autosomal dominant disease that mainly affects the bile ducts and the liver. This syndrome may be associated with ophthalmic anomalies, especially posterior embryotoxon (PE), iris abnormalities, abnormal fundus pigmentation, and optic disc pathologies. ALGS is generally recognized in pediatric age with hepatic, renal, cardiac, pulmonary, or skeletal abnormalities. Many patients are referred to eye clinics after diagnosis.

The presence of PE requires a detailed medical history. Papilledema is an accompanying finding of ALGS. Increased intracranial pressure (ICP) accompanying endocrine diseases

such as polycystic ovaries is one of the causes of papilledema. The coincidence of papilledema and PE may aid in diagnosis and protect against life-threatening conditions (e.g., ICP or vasculopathy).

Based on eye findings, we identified the systemic disease of an undiagnosed ALGS. In this presentation, we demonstrate the ophthalmic findings of the case and introduce the accompanying systemic findings.

We wanted to emphasize the importance of an integrative approach to the patient. We underline the vasculopathic nature of the syndrome, which may be helpful in understanding the cause of ophthalmological findings in different ocular tissues.

How to cite this article: Ogreden T. An Ophthalmic Entity More Than Liver Disease, Alagille Syndrome: A Genetically Confirmed Case Report. Beyoglu Eye J 2025; 10(4): 258-261.

Address for correspondence: Tulin Ogreden, MD. Department of Ophthalmology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkiye
Phone: +90 505 395 74 81 **E-mail:** tulinaras@hotmail.com

Submitted Date: September 04, 2025 **Revised Date:** November 30, 2025 **Accepted Date:** December 15, 2025 **Available Online Date:** January 19, 2026

Beyoglu Eye Training and Research Hospital - Available online at www.beyoglueye.com

OPEN ACCESS This is an open access article under the CC BY-NC license (<http://creativecommons.org/licenses/by-nc/4.0/>).

Case Report

A 28-year-old female patient was referred to our clinic from the neurology department to investigate her headache. She had a broad forehead, a triangular facial appearance, deep-set eyes, and a bulbous nasal tip (Fig. 1).

In her medical history, she had prolonged jaundice in the neonatal period, but she did not receive any treatment for this reason, and the patient's jaundice improved with age.

There was no known diagnosis of ALGS in her family, but there was a sibling lost in the early childhood period.

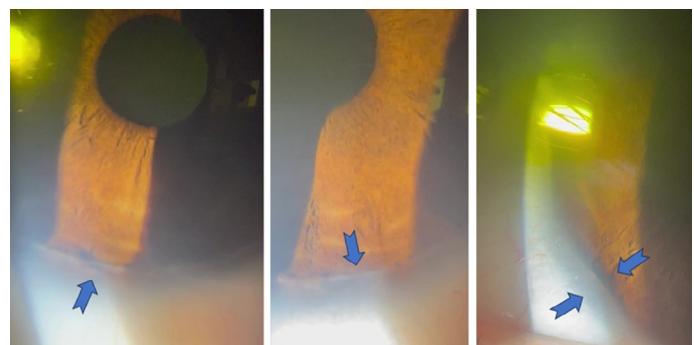
She had been followed in the gynecology clinic for 2 years due to menstrual irregularity.

She had received dermatological treatment for oily scalp and seborrheic dermatitis. She applied to the ear, nose, and throat clinic several times due to nosebleeds, but due to her young age, a hypertensive cause was not considered and was not investigated from this perspective.

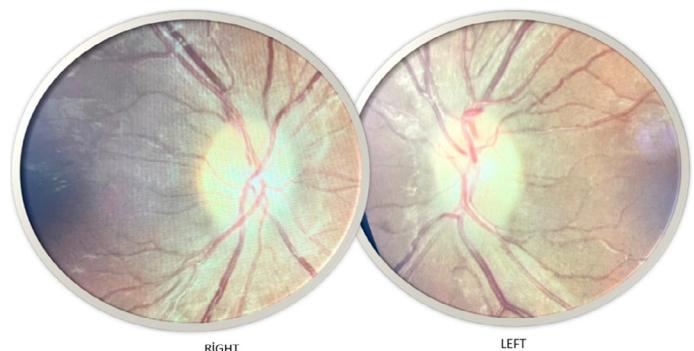
In her gastrointestinal system history, she felt severe indigestion and bloating in the abdominal area after eating for a long time. The gastroenterology clinic, which she went to with these complaints, had applied symptomatic treatment to regulate stomach movements and acid secretion, but no evaluation or imaging was performed in terms of portal hypertension, liver, and bile disorders.

She complained of pain in her neck and lumbar area for a long time, and she was followed up by orthopedics and neurosurgery clinics. C4-C5-C6 mild disc herniation and flattening of cervical lordosis were detected. There was a disc protrusion in L4-L5 and S1. She did not receive any treatment other than painkillers for these complaints.

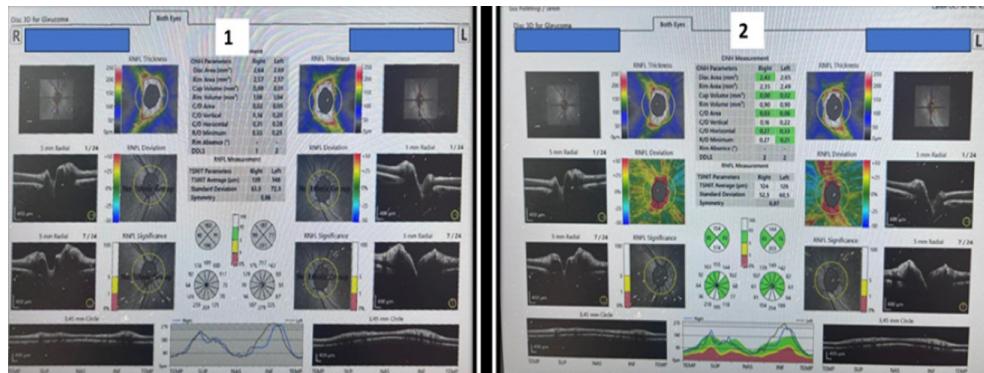
Although the findings of several different systems mentioned before were indicative of ALGS, they were not pathognomonic for any clinician, and it was not suspected that the findings were part of a syndrome until the eye examination.


Figure 1. The broad forehead, triangular face appearance, deep-set eyes, and a bulbous nasal tip.

This report was prepared in accordance with the CARE case report guidelines and with patient-informed consent. The patient underwent routine eye examinations and imaging.


The refractive error was +0.25 in both eyes (Topcon KR-8900 Auto Kerato-Refractometer, Topcon Corporation, Japan). At the first examination, visual acuity was 0.9 in both eyes. Intraocular pressures were normotone (applanation tonometry). The cornea was transparent, and its shape and diameters were normal.

There was PE in both eyes (Fig. 2). The iris surface was regular, and pigmentation was normal. Light reflex was normal. The crystalline lens was clear. There was bilateral grade 2–3 papilledema on fundus examination (Fig. 3). Retinal nerve fiber layer analysis (Cirrus –HD 5,000 OCT, Carl Zeiss Meditec, Dublin, California) was performed at each follow-up (Fig. 4). Although retinal pigmentation was generally normal during retinal examination, spotty pigmentation changes were observed at the periphery (Fig. 5).


After detection of papilledema, she was re-evaluated in neurology with the enlightenment of the eye clinic, with the preliminary diagnosis of ICP accompanying polycystic ovaries. In the lumbar puncture performed in the neurology clinic, the opening pressure was reported as 50 mmHg. The patient was hospitalized and treated, and after medical treatment, the headache resolved, and the papilledema gradually improved. In genetic consultation, missense mutations of

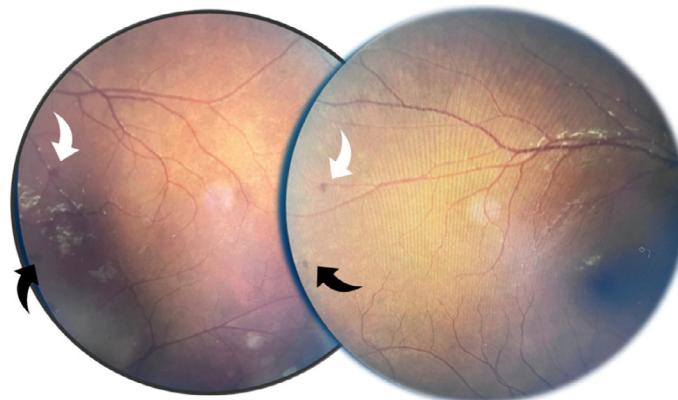

Figure 2. As seen on slit-lamp biomicroscopy, the gray-white Schwalbe's line is concentric with and anterior to the limbus.

Figure 3. Grade 2–3 papilledema on fundus photograph.

Figure 4. Retinal nerve fiber layer (RNFL) image numbered 1 is the first follow-up RNFL image numbered 2 is after treatment for increased intracranial pressure.

Figure 5. Fundus photo: Spot-like pigmentation on the retina periphery.

the jagged canonical Notch ligand 1 (JAG1) gene located on chromosome 20p12.2 were detected. The patient was referred back to the clinics she had previously attended to be re-evaluated with her new diagnosis. Ophthalmic follow-up continues.

Discussion

When ALGS was first described by French pediatrician Daniel Alagille in 1969, it was a clinical entity with unknown genetics (1). ALGS is characterized by five major clinical criteria: cholestasis with bile duct paucity on liver biopsy, congenital cardiac defects (with particular involvement of the pulmonary arteries), PE in the eye, characteristic facial features, and butterfly vertebrae. The clinical spectrum is often wider. ALGS cases presenting with renal abnormalities, hyperandrogenism, and polycystic ovary syndrome have also been reported (2). Three of the five main criteria must be present.

In our case, at least three criteria were present. Although there was a history and clinical picture of cholestasis, the diagnosis of ALGS was not considered, and a liver biopsy was not performed. There was no medical record regarding congenital cardiac defects. Characteristic facial features were present. Findings related to spinal problems were con-

sidered butterfly vertebrae after the diagnosis of ALGS was confirmed. PE in the eye was detected by us.

The most common ocular abnormality is PE (95%) in patients with ALGS, but a group of ocular findings is associated with ALGS. Many different tissues can be affected in the eye, such as the cornea, iris, retina, and optic disc. Iris abnormalities, especially stromal hypoplasia (45%), diffuse fundus hypopigmentation (57%), speckling of the retinal pigment epithelium (33%), optic disc anomalies (76%), microcornea, and congenital maculopathy are other ocular findings (3).

PE refers to an anteriorly displaced and thickened Schwalbe's line. PE most often occurs with Axenfeld–Rieger syndrome and ALGS. In our case, PE was also evident and became the cornerstone in making the diagnosis. If the diagnosis is suspected, other ocular findings should be investigated in detail. For example, in this case, spot-like (speckling) pigmentation was observed in the retinal periphery, a rare finding of ALGS.

ALGS can cause ICP and papilledema, and its frequency is between 7% and 10% (4). Pseudopapilledema associated with optic disc drusen has been reported more frequently in publications (5). However, in this case, there was papilledema due to actual ICP (50 mmHg). ICP accompanying endocrine diseases, such as polycystic ovaries, is one of the causes of papilledema. The coincidence of papilledema and PE may aid in diagnosis. After medical treatment, the papilledema improved. We believe that diagnosis is protective against life-threatening situations.

While ALGS was initially just a group of symptoms, with the detection of the autosomal dominant pattern, genetic research accelerated. Gene analysis revealed that there was a problem with the JAG1 gene in most of the cases. The disease is caused by mutations that disrupt the Notch signaling pathway. Mutations in JAG1 have been identified in ~70% of patients with ALGS (6–8). In our case, we achieved genetic confirmation based on clinical findings.

According to some researchers, ALGS is primarily a vasculopathy, and at least some of the Notch signaling pathway effects are caused by abnormalities of angiogenesis and the vascular system (9). For example, the abnormal formation of mature bile ducts could be the result of abnormal development of the intrahepatic arterial network (10). It is known that the Notch signaling pathway plays a major role in angiogenesis, providing support for this idea and possibly explaining the pathophysiology of the disease.

During cranial neural crest development, iridocorneal microarteritic infarcts can cause PE and possibly trigger microcornea by impairing corneal nutrition. It is reasonable that pigmentations in the retina periphery may be related to microarteritic obstructions. In the presented case, there were PE and retinal anomalies.

ALGS is usually caused by a single mutation in the JAG1, and manifests with liver disease and cardiovascular symptoms that are a direct consequence of JAG1 haploinsufficiency. In the presented case, *de novo* JAG1 gene mutation was detected without a family history. Phenotypic findings were found to be compatible with the angiopathic theory explaining the etiopathogenesis.

In this study, we present the ocular and systemic findings of ALGS. This report does not reflect all gene mutation types and phenotypes. The case report we present is limited and should be supported by more case numbers and phenotypes.

Conclusion

The aim of this report is to support a clinical approach that evaluates possible common and rare comorbidities in ALGS from an ophthalmic perspective. We also emphasize the diversity of clinical presentation. Ophthalmologists should be aware that a delay in the diagnosis of ALGS can be life-threatening. Therefore, the importance of an integrative, multidisciplinary approach should not be forgotten.

Disclosures

Informed Consent: Written informed consent was obtained from all patients.

Conflict of Interest: None declared.

Funding: The author declared that this study has received no financial support.

Use of AI for Writing Assistance: None declared.

Peer-review: Externally peer-reviewed.

References

1. Ayoub MD, Kamath BM. Alagille syndrome: current understanding of pathogenesis, and challenges in diagnosis and management. *Clin Liver Dis* 2022 Aug;26:355–70. [\[CrossRef\]](#)
2. İpekçi B, Aksu NU, Uncuoğlu A. İntrahepatik kolesterol/Alagille sendromu ve nonsendromik safra kanal azlığı. *Turkiye Klinikleri Pediatr Gastroenterol-Spec Top* 2025;6:27–38.
3. Hingorani M, Nischal KK, Davies A, et al. Ocular abnormalities in Alagille syndrome. *Ophthalmology* 1999;106:330–7. [\[CrossRef\]](#)
4. Krahulik D, Hrabalek L, Blazek F, et al. Sensitivity of papilledema as a sign of increased intracranial pressure. *Children* 2023;10:723. [\[CrossRef\]](#)
5. El-Koofy NM, El-Mahdy R, Fahmy ME, El-Hennawy A, Farag MY, El-Karaksy HM. Alagille syndrome: clinical and ocular pathognomonic features. *Eur J Ophthalmol* 2011;21:199–206. [\[CrossRef\]](#)
6. Warthen DM, Moore EC, Kamath BM, et al. Jagged1 (JAG1) mutations in Alagille syndrome: increasing the mutation detection rate. *Hum Mutat* 2006;27:436–43. [\[CrossRef\]](#)
7. Aslanger AD, Yıldırım BT, Kalayci T, et al. JAG1 mutation spectrum in cases with Alagille syndrome from Türkiye. *J Istanbul Fac Med* 2023;86:327–35. [\[CrossRef\]](#)
8. Colliton RP, Bason L, Lu FM, Piccoli DA, Krantz ID, Spinner NB. Mutation analysis of Jagged1 (JAG1) in Alagille syndrome patients. *Hum Mutat* 2001;17:151–2. [\[CrossRef\]](#)
9. Jiang N, Hu Y, Wang M, Zhao Z, Li M. The Notch signaling pathway contributes to angiogenesis and tumor immunity in breast cancer. *Breast Cancer (Dove Med Press)* 2022;29:1–309. [\[CrossRef\]](#)
10. Singh P, Shivaram, Pati GK. Alagille syndrome and the liver: current insights. *Euroasian J Hepatogastroenterol* 2018;8:140–7. [\[CrossRef\]](#)

Subject: Great News for the Turkish Ophthalmology Community!

Dear Ophthalmology Specialists,

We are delighted to announce that as of October 15, 2025, the Beyoglu Eye Journal has been officially indexed in the Web of Science.

All articles published from the 2023 issues onward will now be included in this prestigious index.

This remarkable milestone reflects the dedication and vision of our editorial team.

We extend our deepest gratitude to our Editor-in-Chief, Prof. Dr. Muhittin Taşkapılı, and Editor, Prof. Dr. Çiğdem Altan, for their outstanding contributions that have guided the journal's growth and ensured its inclusion in leading international indexes since its foundation a decade ago.

We also sincerely thank our editorial board members, reviewers, and authors for their continuous support and valuable contributions to the journal's success.

Thank you for being part of this journey toward academic excellence.

Sincerely,

Ali Cangül

<https://orcid.org/0000-0001-6145-483X>

Founder - General Manager

KARE